Menu Close

calculate-n-0-arctan-1-n-2-n-1-




Question Number 85164 by mathmax by abdo last updated on 19/Mar/20
calculate Σ_(n=0) ^∞  arctan((1/(n^2  +n+1)))
calculaten=0arctan(1n2+n+1)
Commented by Cmr 237 last updated on 19/Mar/20
arctan((1/(n^2 +n+1)))=arctan(n+1)−arctan(n)  S=−arctan(0)=0
arctan(1n2+n+1)=arctan(n+1)arctan(n)S=arctan(0)=0
Commented by mind is power last updated on 19/Mar/20
=lim_(n→∞) {arctsn(n+1)−arctan(0)}
=limn{arctsn(n+1)arctan(0)}
Commented by mathmax by abdo last updated on 19/Mar/20
let S_n =Σ_(k=0) ^n  arctan((1/(k^2 +k+1))) ⇒S_n =Σ_(k=0) ^n  arctan(((k+1−k)/(1+k(k+1))))  let k =tan(u_k ) ⇒ ((k+1−k)/(1+k(k+1))) =((tan(u_(k+1) )−tan(u_k ))/(1+tan(u_k )tan(u_(k+1) )))  =tan( u_(k+1) −u_k ) ⇒S_n =Σ_(k=0) ^n  (u_(k+1) −u_k )  =u_(n+1) −u_0 =arctan(n+1)  ⇒lim_(n→+∞)    S_n =(π/2)
letSn=k=0narctan(1k2+k+1)Sn=k=0narctan(k+1k1+k(k+1))letk=tan(uk)k+1k1+k(k+1)=tan(uk+1)tan(uk)1+tan(uk)tan(uk+1)=tan(uk+1uk)Sn=k=0n(uk+1uk)=un+1u0=arctan(n+1)limn+Sn=π2

Leave a Reply

Your email address will not be published. Required fields are marked *