Menu Close

calculate-n-0-n-1-n-x-n-




Question Number 94335 by mathmax by abdo last updated on 18/May/20
calculate Σ_(n=0) ^∞  n^((−1)^n ) x^n
calculaten=0n(1)nxn
Answered by mathmax by abdo last updated on 19/May/20
s(x) =Σ_(n=0) ^∞ (2n) x^(2n)  +Σ_(n=0) ^∞ (2n+1)^(−1)  x^(2n+1)   =2 Σ_(n=0) ^∞  nx^(2n)  +Σ_(n=0) ^∞  (x^(2n+1) /(2n+1)) =h(x)+k(x)  we have Σ_(n=0) ^∞   x^n  =(1/(1−x)) ⇒Σ_(n=1) ^∞  nx^(n−1)  =(1/((1−x)^2 )) ⇒  Σ_(n=1) ^∞  nx^n  =(x/((1−x)^2 )) ⇒Σ_(n=1) ^∞  nx^(2n)  =(x^2 /((1−x^2 )^2 ))=h(x)  k(x) =Σ_(n=0) ^∞  (x^(2n+1) /(2n+1)) ⇒k^′ (x) =Σ_(n=0) ^∞  x^(2n)  =(1/(1−x^2 )) ⇒  k(x) =∫_0 ^x  (dt/(1−t^2 )) +k   (k=0) =(1/2)∫_0 ^x ((1/(1−t))+(1/(1+t)))dt  =(1/2)[ln∣((1+t)/(1−t))∣]_0 ^x  =(1/2)ln∣((1+x)/(1−x))∣ ⇒s(x) =((2x^2 )/((1−x^2 )^2 )) +(1/2)ln∣((1+x)/(1−x))∣   with ∣x∣ <1
s(x)=n=0(2n)x2n+n=0(2n+1)1x2n+1=2n=0nx2n+n=0x2n+12n+1=h(x)+k(x)wehaven=0xn=11xn=1nxn1=1(1x)2n=1nxn=x(1x)2n=1nx2n=x2(1x2)2=h(x)k(x)=n=0x2n+12n+1k(x)=n=0x2n=11x2k(x)=0xdt1t2+k(k=0)=120x(11t+11+t)dt=12[ln1+t1t]0x=12ln1+x1xs(x)=2x2(1x2)2+12ln1+x1xwithx<1
Answered by maths mind last updated on 18/May/20
=Σ_(n≥1) 2nx^(2n) −Σ_(n≥0) (2n+1)x^(2n+1)   s=Σ_(n≥1) 2nx^(2n) −xΣ_(n≥0) 2nx^(2n) −xΣ_(n≥0) x^(2n)   Σ_(n≥1) nx^(n−1) =(1/((1−x)^2 ))  ⇒Σ2nx^(2n) =((2x^2 )/((1−x^2 )^2 ))  ⇒s=((2x^2 )/((1−x^2 )^2 ))−((2x^3 )/((1−x^2 )^2 ))−(x/(1−x^2 ))  s=((−x^3 +2x^2 −x)/((1−x^2 )^2 ))
=n12nx2nn0(2n+1)x2n+1s=n12nx2nxn02nx2nxn0x2nn1nxn1=1(1x)2Σ2nx2n=2x2(1x2)2s=2x2(1x2)22x3(1x2)2x1x2s=x3+2x2x(1x2)2
Commented by mathmax by abdo last updated on 19/May/20
thanks sir.
thankssir.

Leave a Reply

Your email address will not be published. Required fields are marked *