calculate-n-0-n-1-n-x-n- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 94335 by mathmax by abdo last updated on 18/May/20 calculate∑n=0∞n(−1)nxn Answered by mathmax by abdo last updated on 19/May/20 s(x)=∑n=0∞(2n)x2n+∑n=0∞(2n+1)−1x2n+1=2∑n=0∞nx2n+∑n=0∞x2n+12n+1=h(x)+k(x)wehave∑n=0∞xn=11−x⇒∑n=1∞nxn−1=1(1−x)2⇒∑n=1∞nxn=x(1−x)2⇒∑n=1∞nx2n=x2(1−x2)2=h(x)k(x)=∑n=0∞x2n+12n+1⇒k′(x)=∑n=0∞x2n=11−x2⇒k(x)=∫0xdt1−t2+k(k=0)=12∫0x(11−t+11+t)dt=12[ln∣1+t1−t∣]0x=12ln∣1+x1−x∣⇒s(x)=2x2(1−x2)2+12ln∣1+x1−x∣with∣x∣<1 Answered by maths mind last updated on 18/May/20 =∑n⩾12nx2n−∑n⩾0(2n+1)x2n+1s=∑n⩾12nx2n−x∑n⩾02nx2n−x∑n⩾0x2n∑n⩾1nxn−1=1(1−x)2⇒Σ2nx2n=2x2(1−x2)2⇒s=2x2(1−x2)2−2x3(1−x2)2−x1−x2s=−x3+2x2−x(1−x2)2 Commented by mathmax by abdo last updated on 19/May/20 thankssir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: developp-at-integr-serie-f-x-arcsinx-2-Next Next post: developp-at-integr-serie-f-x-1-x-1-x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.