Menu Close

calculate-n-0-n-2-2n-




Question Number 147863 by mathmax by abdo last updated on 24/Jul/21
calculate Σ_(n=0) ^∞  ((n!^2 )/((2n)!))
calculaten=0n!2(2n)!
Answered by qaz last updated on 24/Jul/21
Σ_(n=0) ^∞ (((n!)^2 )/((2n)!))  =Σ_(n=0) ^∞ (2n+2)∫_0 ^1 (x−x^2 )^n dx  =∫_0 ^1 (2yD+2)∣_(y=x−x^2 ) Σ_(n=0) ^∞ y^n dx  =∫_0 ^1 (2yD+2)∣_(y=x−x^2 ) (1/(1−y))dx  =∫_0 ^1 (2/((1−y)^2 ))∣_(y=x−x^2 ) dx  =∫_0 ^1 (2/((1−x+x^2 )^2 ))dx  =(((4/3)x−(2/3))/(1−x+x^2 ))∣_0 ^1 +∫_0 ^1 ((4/3)/(1−x+x^2 ))dx  =(4/3)+((8(√3)π)/( 27))
n=0(n!)2(2n)!=n=0(2n+2)01(xx2)ndx=01(2yD+2)y=xx2n=0yndx=01(2yD+2)y=xx211ydx=012(1y)2y=xx2dx=012(1x+x2)2dx=43x231x+x201+01431x+x2dx=43+83π27

Leave a Reply

Your email address will not be published. Required fields are marked *