Menu Close

calculate-n-0-n-n-1-4-2n-1-2-




Question Number 51185 by Abdo msup. last updated on 24/Dec/18
calculate Σ_(n=0) ^∞    (n/((n+1)^4 (2n+1)^2 ))
calculaten=0n(n+1)4(2n+1)2
Commented by Abdo msup. last updated on 30/Dec/18
let decompose F(x)=(x/((x+1)^4 (2x+1)^2 ))  F(x)=(a/(x+1)) +(b/((x+1)^2 )) +(c/((x+1)^3 )) +(d/((x+1)^4 ))  +(e/(2x+1)) +(f/((2x+1)^2 ))  d =lim_(x→−1) (x+1)^4 F(x)=−1  f =lim_(x→−(1/2))    (2x+1)^2 F(x)=((−1)/2).16 =−8 ⇒  F(x)=(a/(x+1)) +(b/((x+1)^2 )) +(c/((x+1)^3 )) −(1/((x+1)^4 ))  +(e/(2x+1)) −(8/((2x+1)^2 ))  lim_(x→+∞) xF(x)=0 =a+(e/2) ⇒2a+e=0 ⇒e=−2a  ⇒F(x)=(a/(x+1)) +(b/((x+1)^2 )) +(c/((x+1)^3 )) −(1/((x+1)^4 ))  −((2a)/(2x+1)) −(8/((2x+1)^2 ))  F(0)=0=a+b+c−1−2a−8=−a+b+c−9 ⇒  −a+b+c =9 ⇒a−b−c=−9  F(−2)=((−2)/9) =−a+b−c−1+(2/3)a−(8/9) ⇒  −2 =−9a+9b−9c−9+6a−8 ⇒  −3a+9b−9c−15=0 ⇒3a−9b+9c+15=0 ⇒  a−3b+3c=−5...be continued...
letdecomposeF(x)=x(x+1)4(2x+1)2F(x)=ax+1+b(x+1)2+c(x+1)3+d(x+1)4+e2x+1+f(2x+1)2d=limx1(x+1)4F(x)=1f=limx12(2x+1)2F(x)=12.16=8F(x)=ax+1+b(x+1)2+c(x+1)31(x+1)4+e2x+18(2x+1)2limx+xF(x)=0=a+e22a+e=0e=2aF(x)=ax+1+b(x+1)2+c(x+1)31(x+1)42a2x+18(2x+1)2F(0)=0=a+b+c12a8=a+b+c9a+b+c=9abc=9F(2)=29=a+bc1+23a892=9a+9b9c9+6a83a+9b9c15=03a9b+9c+15=0a3b+3c=5becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *