Menu Close

calculate-n-1-1-n-1-n-1-1-




Question Number 160928 by mnjuly1970 last updated on 09/Dec/21
         calculate        Ω = Σ_(n=1) ^∞ (( ζ ( 1+ n ) −1)/(n + 1)) =^?  1− γ    −−−−−−−−−−−
calculateΩ=n=1ζ(1+n)1n+1=?1γ
Answered by qaz last updated on 09/Dec/21
Σ_(n=1) ^∞ ((ζ(1+n)−1)/(n+1))  =Σ_(n=1) ^∞ Σ_(k=2) ^∞ (1/(k^(1+n) (1+n)))  =Σ_(k=2) ^∞ Σ_(n=2) ^∞ (1/(nk^n ))  =Σ_(k=2) ^∞ (Σ_(n=1) ^∞ ((1/(nk^n )))−(1/k))  =Σ_(k=2) ^∞ (ln(k/(k−1))−(1/k))  =lim_(N→∞) Σ_(k=1) ^N (ln(k+1)−lnk−(1/(k+1)))  =lim_(N→∞) (ln(N+1)−H_(N+1) +1)  =1−γ
n=1ζ(1+n)1n+1=n=1k=21k1+n(1+n)=k=2n=21nkn=k=2(n=1(1nkn)1k)=k=2(lnkk11k)=limNNk=1(ln(k+1)lnk1k+1)=limN(ln(N+1)HN+1+1)=1γ
Commented by mnjuly1970 last updated on 09/Dec/21
bravo sir qaz
bravosirqaz

Leave a Reply

Your email address will not be published. Required fields are marked *