Menu Close

calculate-n-1-1-n-16n-2-1-




Question Number 55276 by maxmathsup by imad last updated on 20/Feb/19
calculate Σ_(n=1) ^∞    (((−1)^n )/(16n^2 −1))
calculaten=1(1)n16n21
Commented by maxmathsup by imad last updated on 08/Apr/19
let S =Σ_(n=1) ^∞   (((−1)^n )/(16n^2  −1)) ⇒S =Σ_(n=1) ^∞   (((−1)^n )/((4n−1)(4n+1)))  =(1/2)Σ_(n=1) ^∞   (−1)^n { (1/(4n−1)) −(1/(4n+1))} ⇒2S =Σ_(n=1) ^∞  (((−1)^n )/(4n−1)) −Σ_(n=1) ^∞  (((−1)^n )/(4n+1))  we have proved that Σ_(n=0) ^∞  (((−1)^n )/(4n+3)) =(π/(4(√2)))  (Q55268) ⇒  Σ_(n=1) ^∞  (((−1)^n )/(4n−1)) =_(n=p+1)    Σ_(p=0) ^∞  (((−1)^(p+1) )/(4p+3)) =−Σ_(p=0) ^∞   (((−1)^p )/(4p+3)) =−(π/(4(√2)))  let determine Σ_(n=1) ^∞  (((−1)^n )/(4n+1))  let w(x) =Σ_(n=0) ^∞ (−1)^n   (x^(4n+1) /(4n+1))  with x∈[−1,1]  we have w(1) =Σ_(n=0) ^∞  (((−1)^n )/(4n+1)) =1+Σ_(n=1) ^∞  (((−1)^n )/(4n+1)) ⇒Σ_(n=1) ^∞  (((−1)^n )/(4n+1)) =w(1)−1  we have w^′ (x) =Σ_(n=0) ^∞  (−1)^n  x^(4n)  =(1/(1+x^4 )) ⇒w(x) =∫_0 ^x   (dt/(1+t^4 )) +c  c=w(0) =0 ⇒w(x)=∫_0 ^x   (dt/(1+t^4 ))  and w(1) =∫_0 ^1   (dt/(1+t^4 ))  we have ∫_0 ^∞    (dt/(1+t^4 )) =∫_0 ^1  (dt/(1+t^4 )) +∫_1 ^(+∞)   (dt/(1+t^4 ))  but ∫_1 ^(+∞)    (dt/(1+t^4 )) =_(t =(1/x))   −∫_0 ^1   (1/(1+(1/x^4 ))) (−(dx/x^2 ))  = ∫_0 ^1    (x^4 /(x^2 (1+x^4 ))) dx =∫_0 ^1    (x^2 /(1+x^4 )) dx  =(π/(4(√2))) (result proved) ⇒  ∫_0 ^1   (dt/(1+t^4 )) =∫_0 ^∞    (dt/(1+t^4 )) −(π/(4(√2)))  and  ∫_0 ^∞    (dt/(1+t^4 )) =_(t =u^(1/4) )      ∫_0 ^∞      (1/(1+u)) (1/4)u^((1/4)−1) du  =(1/4) ∫_0 ^∞   (u^((1/4)−1) /(1+u)) du =(1/4) (π/(sin((π/4)))) =(π/(4(1/( (√2))))) =((π(√2))/4) ⇒∫_0 ^1  (dt/(1+t^4 )) =((π(√2))/4) −(π/(4(√2)))  =((π(√2))/4) −((π(√2))/8) =((π(√2))/8) ⇒Σ_(n=1) ^∞  (((−1)^n )/(4n+1)) =((π(√2))/8) −1 ⇒  S =(1/2){−(π/(4(√2))) −((π(√2))/8) +1} =(1/2){1−((π(√2))/4)} .
letS=n=1(1)n16n21S=n=1(1)n(4n1)(4n+1)=12n=1(1)n{14n114n+1}2S=n=1(1)n4n1n=1(1)n4n+1wehaveprovedthatn=0(1)n4n+3=π42(Q55268)n=1(1)n4n1=n=p+1p=0(1)p+14p+3=p=0(1)p4p+3=π42letdeterminen=1(1)n4n+1letw(x)=n=0(1)nx4n+14n+1withx[1,1]wehavew(1)=n=0(1)n4n+1=1+n=1(1)n4n+1n=1(1)n4n+1=w(1)1wehavew(x)=n=0(1)nx4n=11+x4w(x)=0xdt1+t4+cc=w(0)=0w(x)=0xdt1+t4andw(1)=01dt1+t4wehave0dt1+t4=01dt1+t4+1+dt1+t4but1+dt1+t4=t=1x0111+1x4(dxx2)=01x4x2(1+x4)dx=01x21+x4dx=π42(resultproved)01dt1+t4=0dt1+t4π42and0dt1+t4=t=u14011+u14u141du=140u1411+udu=14πsin(π4)=π412=π2401dt1+t4=π24π42=π24π28=π28n=1(1)n4n+1=π281S=12{π42π28+1}=12{1π24}.

Leave a Reply

Your email address will not be published. Required fields are marked *