calculate-n-1-1-n-16n-2-1- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 55276 by maxmathsup by imad last updated on 20/Feb/19 calculate∑n=1∞(−1)n16n2−1 Commented by maxmathsup by imad last updated on 08/Apr/19 letS=∑n=1∞(−1)n16n2−1⇒S=∑n=1∞(−1)n(4n−1)(4n+1)=12∑n=1∞(−1)n{14n−1−14n+1}⇒2S=∑n=1∞(−1)n4n−1−∑n=1∞(−1)n4n+1wehaveprovedthat∑n=0∞(−1)n4n+3=π42(Q55268)⇒∑n=1∞(−1)n4n−1=n=p+1∑p=0∞(−1)p+14p+3=−∑p=0∞(−1)p4p+3=−π42letdetermine∑n=1∞(−1)n4n+1letw(x)=∑n=0∞(−1)nx4n+14n+1withx∈[−1,1]wehavew(1)=∑n=0∞(−1)n4n+1=1+∑n=1∞(−1)n4n+1⇒∑n=1∞(−1)n4n+1=w(1)−1wehavew′(x)=∑n=0∞(−1)nx4n=11+x4⇒w(x)=∫0xdt1+t4+cc=w(0)=0⇒w(x)=∫0xdt1+t4andw(1)=∫01dt1+t4wehave∫0∞dt1+t4=∫01dt1+t4+∫1+∞dt1+t4but∫1+∞dt1+t4=t=1x−∫0111+1x4(−dxx2)=∫01x4x2(1+x4)dx=∫01x21+x4dx=π42(resultproved)⇒∫01dt1+t4=∫0∞dt1+t4−π42and∫0∞dt1+t4=t=u14∫0∞11+u14u14−1du=14∫0∞u14−11+udu=14πsin(π4)=π412=π24⇒∫01dt1+t4=π24−π42=π24−π28=π28⇒∑n=1∞(−1)n4n+1=π28−1⇒S=12{−π42−π28+1}=12{1−π24}. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Determine-the-convergence-intervval-of-n-0-1-n-x-1-n-Next Next post: Find-all-integral-solutions-to-the-equation-x-2-1-y-2-1-2-x-y-1-xy-4-1-xy- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.