Menu Close

calculate-n-1-1-n-2-2n-1-2-




Question Number 38518 by math khazana by abdo last updated on 26/Jun/18
calculate  Σ_(n=1) ^∞   (1/(n^2 (2n−1)^2 ))
calculaten=11n2(2n1)2
Commented by prof Abdo imad last updated on 27/Jun/18
let put S_n =Σ_(k=1) ^n   (1/(k^2 (2k−1)^2 ))  and let decompose  F(x)= (1/(x^2 (2x−1)^2 ))  F(x)=(a/x) +(b/x^2 ) +(c/(2x−1)) +(d/((2x−1)^2 ))  b=lim_(x→0) x^2  F(x)=1  d=lim_(x→(1/2))   (2x−1)^2 F(x)=4 ⇒  F(x)=(a/x) +(1/x^2 ) +(c/(2x−1)) +(4/((2x−1)^2 ))  lim_(x→+∞) x F(x)=0=a +(c/2) ⇒2a+c=0 ⇒c=−2a  F(x)=(a/x) −((2a)/(2x−1)) +(1/x^2 ) +(4/((2x−1)^2 ))  F(1)=1=a −2a  +1 +4 ⇒−a +4=0 ⇒a=4  F(x)= (4/x) −(8/(2x−1))  +(1/x^2 ) +(4/((2x−1)^2 ))  S_n =Σ_(k=1) ^n F(k) = 4Σ_(k=1) ^n  (1/k) −8Σ_(k=1) ^n  (1/(2k−1))  +Σ_(k=1) ^n  (1/k^2 )  +4 Σ_(k=1) ^n  (1/((2k−1)^2 )) but  Σ_(k=1) ^n  (1/k) =H_n   Σ_(k=1) ^n  (1/(2k−1)) =1 +(1/3) +(1/5) +....+(1/(2n−1))  =1+(1/2) +(1/3) +(1/4) +.....+(1/(2n−1)) +(1/(2n))  −(1/2)H_n =H_(2n)  −(1/2) H_n   Σ_(k=1) ^n  (1/k^2 ) =ξ_n (2)  Σ_(k=1) ^n    (1/((2k−1)^2 )) =Σ_(k=2) ^(n+1)   (1/((2k+1)^2 ))  =Σ_(k=0) ^(n+1)   (1/((2k+1)^2 )) ⇒  S_n = 4 H_n   −8H_(2n)  +4 H_n   +ξ_n (2)+4Σ_(k=0) ^(n+1)  (1/((2k+1)^2 ))  S_n =−8(H_(2n)  −H_n ) +ξ_n (2) +4Σ_(k=0) ^(n+1)   (1/((2k+1)^2 ))  lim_(n→+∞) S_n =−8ln(2) +(π^2 /6) +4 .(π^2 /8)  =−8ln(2) +(π^2 /6) +(π^2 /2) =((4π^2 )/6) −8ln(2)  =((2π^2 )/3) −8ln(2) .
letputSn=k=1n1k2(2k1)2andletdecomposeF(x)=1x2(2x1)2F(x)=ax+bx2+c2x1+d(2x1)2b=limx0x2F(x)=1d=limx12(2x1)2F(x)=4F(x)=ax+1x2+c2x1+4(2x1)2limx+xF(x)=0=a+c22a+c=0c=2aF(x)=ax2a2x1+1x2+4(2x1)2F(1)=1=a2a+1+4a+4=0a=4F(x)=4x82x1+1x2+4(2x1)2Sn=k=1nF(k)=4k=1n1k8k=1n12k1+k=1n1k2+4k=1n1(2k1)2butk=1n1k=Hnk=1n12k1=1+13+15+.+12n1=1+12+13+14+..+12n1+12n12Hn=H2n12Hnk=1n1k2=ξn(2)k=1n1(2k1)2=k=2n+11(2k+1)2=k=0n+11(2k+1)2Sn=4Hn8H2n+4Hn+ξn(2)+4k=0n+11(2k+1)2Sn=8(H2nHn)+ξn(2)+4k=0n+11(2k+1)2limn+Sn=8ln(2)+π26+4.π28=8ln(2)+π26+π22=4π268ln(2)=2π238ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *