calculate-n-1-1-n-3n-1- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 41349 by math khazana by abdo last updated on 06/Aug/18 calculate∑n=1∞(−1)n3n−1 Commented by maxmathsup by imad last updated on 06/Aug/18 letS=∑n=1∞(−1)n3n−1changementofindicen=j+1giveS=∑j=0∞(−1)j+13j+2=−∑j=0∞(−1)j3j+2⇒S=−∑n=0∞(−1)n3n+2letw(x)=∑n=0∞(−1)n3n+2x3n+2with∣x∣<1wehaveS=w(1)andw′(x)=∑n=0∞(−1)nx3n+1=x∑n=0∞(−x3)n=x1+x3⇒w(x)=∫xdx1+x3+cletdecompseF(x)=x1+x3=x(x+1)(x2−x+1)F(x)=ax+1+bx+cx2−x+1a=limx→−1(x+1)F(x)=−13limx→+∞xF(x)=0=a+b⇒b=13⇒F(x)=−13(x+1)+13x+3cx2−x+1F(0)=0=−13+c⇒c=13⇒F(x)=−13(x+1)+13x+1x2−x+1⇒∫F(x)dx=−13ln∣x+1∣+16∫2x−1+3x2−x+1dx=−13ln∣x+1∣+16ln(x2−x+1)+12∫dx(x−12)2+34but∫dx(x−12)2+34=x−12=32t43∫11+t232dt=23arctan(2x−13)⇒w(x)=−13ln∣x+1∣+16ln(x2−x+1)+23arctan(2x−13)+cw(0)=0=−23arctan(13)+c⇒c=23arctan(13)=23π6=π33⇒w(x)=−13ln∣x+1∣+16ln(x2−x+1)+23arctan(2x−1)3)+π33S=w(1)=−13ln(2)+23arctan(13)+π33=−ln(2)3+23π6+π33S=2π33−ln(2)3. Commented by math khazana by abdo last updated on 07/Aug/18 S=−w(1)⇒S=ln(2)3−2π33. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-41347Next Next post: Question-172420 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.