Menu Close

calculate-n-1-1-n-3n-1-




Question Number 41349 by math khazana by abdo last updated on 06/Aug/18
calculate  Σ_(n=1) ^∞   (((−1)^n )/(3n−1))
calculaten=1(1)n3n1
Commented by maxmathsup by imad last updated on 06/Aug/18
let S = Σ_(n=1) ^∞   (((−1)^n )/(3n−1)) changement of indice n=j+1 give  S =Σ_(j=0) ^∞    (((−1)^(j+1) )/(3j+2)) =−Σ_(j=0) ^∞   (((−1)^j )/(3j+2)) ⇒ S=−Σ_(n=0) ^∞  (((−1)^n )/(3n+2)) let  w(x) =Σ_(n=0) ^∞   (((−1)^n )/(3n+2)) x^(3n+2)   with ∣x∣<1 wehave S=w(1) and  w^′ (x)=Σ_(n=0) ^∞    (−1)^n x^(3n+1)  =x Σ_(n=0) ^∞ (−x^3 )^n  =(x/(1+x^3 )) ⇒  w(x) = ∫  ((xdx)/(1+x^3 ))  +c  let decompse F(x)=(x/(1+x^3 )) =(x/((x+1)(x^2 −x+1)))  F(x) = (a/(x+1)) +((bx+c)/(x^2 −x +1))  a =lim_(x→−1) (x+1)F(x)= ((−1)/3)  lim_(x→+∞) xF(x) =0 =a+b ⇒b=(1/3) ⇒ F(x)=−(1/(3(x+1))) +(1/3)  ((x+3c)/(x^2 −x+1))  F(0) = 0 =−(1/3) +c ⇒c=(1/3) ⇒F(x)=((−1)/(3(x+1))) +(1/3) ((x+1)/(x^2 −x+1)) ⇒  ∫ F(x)dx =−(1/3)ln∣x+1∣ +(1/6) ∫ ((2x−1+3)/(x^2 −x+1))dx  =−(1/3)ln∣x+1∣  +(1/6)ln(x^2 −x+1) +(1/2) ∫  (dx/((x−(1/2))^2 +(3/4))) but  ∫     (dx/((x−(1/2))^2  +(3/4))) =_(x−(1/2)=((√3)/2)t)    (4/3) ∫   (1/(1+t^2 )) ((√3)/2) dt  =(2/( (√3))) arctan(((2x−1)/( (√3))))⇒w(x)=−(1/3)ln∣x+1∣ +(1/6)ln(x^2 −x+1) +(2/( (√3)))arctan(((2x−1)/( (√3))))+c  w(0)=0 =−(2/( (√3))) arctan((1/( (√3))))+c ⇒c=(2/( (√3)))arctan((1/( (√3))))=(2/( (√3)))(π/6) =(π/(3(√3))) ⇒  w(x) =−(1/3)ln∣x+1∣ +(1/6)ln(x^2 −x+1) +(2/( (√3))) arctan(((2x−1))/( (√3)))) +(π/(3(√3)))  S=w(1)=−(1/3)ln(2) +(2/( (√3))) arctan((1/( (√3)))) +(π/(3(√3))) =−((ln(2))/3) +(2/( (√3))) (π/6)  +(π/(3(√3)))  S =((2π)/(3(√3))) −((ln(2))/3) .
letS=n=1(1)n3n1changementofindicen=j+1giveS=j=0(1)j+13j+2=j=0(1)j3j+2S=n=0(1)n3n+2letw(x)=n=0(1)n3n+2x3n+2withx∣<1wehaveS=w(1)andw(x)=n=0(1)nx3n+1=xn=0(x3)n=x1+x3w(x)=xdx1+x3+cletdecompseF(x)=x1+x3=x(x+1)(x2x+1)F(x)=ax+1+bx+cx2x+1a=limx1(x+1)F(x)=13limx+xF(x)=0=a+bb=13F(x)=13(x+1)+13x+3cx2x+1F(0)=0=13+cc=13F(x)=13(x+1)+13x+1x2x+1F(x)dx=13lnx+1+162x1+3x2x+1dx=13lnx+1+16ln(x2x+1)+12dx(x12)2+34butdx(x12)2+34=x12=32t4311+t232dt=23arctan(2x13)w(x)=13lnx+1+16ln(x2x+1)+23arctan(2x13)+cw(0)=0=23arctan(13)+cc=23arctan(13)=23π6=π33w(x)=13lnx+1+16ln(x2x+1)+23arctan(2x1)3)+π33S=w(1)=13ln(2)+23arctan(13)+π33=ln(2)3+23π6+π33S=2π33ln(2)3.
Commented by math khazana by abdo last updated on 07/Aug/18
S=−w(1) ⇒ S=((ln(2))/3) −((2π)/(3(√3))) .
S=w(1)S=ln(2)32π33.

Leave a Reply

Your email address will not be published. Required fields are marked *