Menu Close

calculate-n-1-1-n-n-1-n-2-n-3-n-4-n-5-




Question Number 46617 by maxmathsup by imad last updated on 29/Oct/18
calculate  Σ_(n=1) ^∞   (1/(n(n+1)(n+2)(n+3)(n+4)(n+5)))
calculaten=11n(n+1)(n+2)(n+3)(n+4)(n+5)
Commented by maxmathsup by imad last updated on 29/Oct/18
let decompose F(x)=(1/(x(x+1)(x+2)(x+3)(x+4)(x+5)))  F(x)=(a/(x )) +(b/(x+1)) +(c/(x+2)) +(d/(x+3)) +(e/(x+4)) +(f/(x+5))  a =lim_(x→0) xF(x)=(1/(1.2.3.4.5)) =(1/(120))  b=lim_(x→−1) (x+1)F(x)=(1/((−1)1.2.3.4)) =((−1)/(24))  c=lim_(x→−2) (x+2)F(x)= (1/((−2).(−1)1.2.3)) =(1/(12))  d =lim_(x→−3) (x+3)F(x)=(1/((−3)(−2)(−1)1.2)) =((−1)/(12))  e =lim_(x→−4) (x+4)F(x)=(1/((−4)(−3)(−2)(−1).1)) =(1/(24))  f =lim_(x→−5) (x+5)F(x) =(1/((−5)(−4)(−3)(−2)(−1))) =((−1)/(120)) ⇒  F(x)=(1/(120x)) −(1/(24(x+1))) +(1/(12(x+2))) −(1/(12(x+3))) +(1/(24(x+4))) −(1/(120(x+5))) ⇒  Σ_(k=1) ^n F(k) =(1/(120)) Σ_(k=1) ^n (1/k) −(1/(24)) Σ_(k=1) ^n  (1/(k+1)) +(1/(12))Σ_(k=1) ^n  (1/(k+2)) −(1/(12))Σ_(k=1) ^n  (1/(k+3))  +(1/(24)) Σ_(k=1) ^n  (1/(k+4)) −(1/(120))Σ_(k=1) ^n (1/(k+5))  =(1/(120)) H_n −(1/(24)){ H_(n+1) −1} +(1/(12)){H_(n+2) −(3/2)} −(1/(12)){H_(n+3) −(3/2)−(1/3)}  +(1/(24)){H_(n+4) −(3/2)−(1/3)−(1/4)}−(1/(120)){H_(n+5) −(3/2)−(1/3)−(1/4) −(1/5)}  =(1/(120)){H_n −H_(n+5) } +(1/(24)){H_(n+4) −H_(n+1) } +(1/(12)){ H_(n+2) −H_(n+3) }  +(1/(24)) −(1/8) +(1/(12))((3/2)+(1/3))−(1/(24))((3/2)+(1/3)+(1/4))+(1/(120)){(3/2) +(1/3) +(1/4) +(1/5)} but  H_n −H_(n+5) →0 ,H_(n+4) −H_(n+1) →0 ^� H_(n+2) −H_(n+3) →0 (n→+∞)  after reducton of calculus we get   lim_(n→+∞) Σ_(k=1) ^n  F(k) =(1/(600))  =S .
letdecomposeF(x)=1x(x+1)(x+2)(x+3)(x+4)(x+5)F(x)=ax+bx+1+cx+2+dx+3+ex+4+fx+5a=limx0xF(x)=11.2.3.4.5=1120b=limx1(x+1)F(x)=1(1)1.2.3.4=124c=limx2(x+2)F(x)=1(2).(1)1.2.3=112d=limx3(x+3)F(x)=1(3)(2)(1)1.2=112e=limx4(x+4)F(x)=1(4)(3)(2)(1).1=124f=limx5(x+5)F(x)=1(5)(4)(3)(2)(1)=1120F(x)=1120x124(x+1)+112(x+2)112(x+3)+124(x+4)1120(x+5)k=1nF(k)=1120k=1n1k124k=1n1k+1+112k=1n1k+2112k=1n1k+3+124k=1n1k+41120k=1n1k+5=1120Hn124{Hn+11}+112{Hn+232}112{Hn+33213}+124{Hn+4321314}1120{Hn+532131415}=1120{HnHn+5}+124{Hn+4Hn+1}+112{Hn+2Hn+3}+12418+112(32+13)124(32+13+14)+1120{32+13+14+15}butHnHn+50,Hn+4Hn+10¯Hn+2Hn+30(n+)afterreductonofcalculuswegetlimn+k=1nF(k)=1600=S.
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Oct/18
first calculate S_n    then the value when n→∞  S_n =C−(1/((n+1)(n+2)(n+3)(n+4)(n+5)×1×5))  S_1 =T_1 =(1/(1×2×3×4×5×6))=(1/(720))  so S_n =C−(1/((n+1)(n+2)(n+3)(n+4)(n+5)×1×5))  (1/(720))=C−(1/(2×3×4×5×6×1×5))  C=(1/(720))+(1/(720×5))=(1/(720))(1+(1/5))=(1/(720))×(6/5)  C=(1/(600))  s0  S_n =(1/(600))−(1/((n+1)(n+2)(n+3)(n+4)(n+5)×1×5))  when n→∞  S_n →(1/(600))  so reauired answer is (1/(600))
firstcalculateSnthenthevaluewhennSn=C1(n+1)(n+2)(n+3)(n+4)(n+5)×1×5S1=T1=11×2×3×4×5×6=1720soSn=C1(n+1)(n+2)(n+3)(n+4)(n+5)×1×51720=C12×3×4×5×6×1×5C=1720+1720×5=1720(1+15)=1720×65C=1600s0Sn=16001(n+1)(n+2)(n+3)(n+4)(n+5)×1×5whennSn1600soreauiredansweris1600

Leave a Reply

Your email address will not be published. Required fields are marked *