Menu Close

calculate-n-1-1-n-n-2-n-1-n-2-




Question Number 64820 by mathmax by abdo last updated on 22/Jul/19
calculate Σ_(n=1) ^∞   (((−1)^n )/(n^2 (n+1)(n+2)))
calculaten=1(1)nn2(n+1)(n+2)
Commented by mathmax by abdo last updated on 22/Jul/19
let decompose F(x) =(1/(x^2 (x+1)(x+2))) ⇒  F(x) =(a/x) +(b/x^2 ) +(c/(x+1)) +(d/(x+2))  b=lim_(x→0) x^2  F(x) =(1/2)  c =lim_(x→−1) (x+1)F(x) =1  d =lim_(x→−2) (x+2)F(x) =−(1/4) ⇒F(x)=(a/x) +(1/(2x^2 )) +(1/(x+1)) −(1/(4(x+2)))  lim_(x→+∞) xF(x) =0 =a+1 ⇒a =−1 ⇒  F(x) =−(1/x) +(1/(2x^2 )) +(1/(x+1)) −(1/(4(x+2))) ⇒  S =−Σ_(n=1) ^∞  (((−1)^n )/n) +(1/2) Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +Σ_(n=1) ^∞  (((−1)^n )/(n+1)) −(1/4)Σ_(n=1) ^∞  (((−1)^n )/(n+2))  we know  Σ_(n=1) ^∞  (x^n /n) =−ln(1−x)   if ∣x∣<1 ⇒Σ_(n=1) ^∞  (((−1)^n )/n) =−ln2  Σ_(n=1) ^∞   (((−1)^n )/(n+1)) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n) =−Σ_(n=2) ^∞  (((−1)^n )/n)  =−(Σ_(n=1) ^∞  (((−1)^n )/n) +1) =−(−ln2 +1) =ln2−1  Σ_(n=1) ^∞  (((−1)^n )/(n+2)) =Σ_(n=3) ^(+∞)   (((−1)^(n−2) )/n) =Σ_(n=3) ^∞  (((−1)^n )/n)  =Σ_(n=1) ^∞  (((−1)^n )/n) −(−1+(1/2)) =−ln2 +(1/2)  let δ(x) =Σ_(n=1) ^∞  (((−1)^n )/n^x )  with x>1  we have proved that  δ(x) =(2^(1−x) −1)ξ(x) ⇒Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =δ(2) =(2^(−1) −1)ξ(2)  =−(1/2)(π^2 /6) =−(π^2 /(12))  ⇒  S =ln(2)−(π^2 /(24)) +ln2−1 −(1/4)(−ln2 +(1/2))  =2ln2 −(π^2 /(24)) −1 +(1/4)ln2 −(1/8) =(9/4)ln2 −(9/8) −(π^2 /(24))
letdecomposeF(x)=1x2(x+1)(x+2)F(x)=ax+bx2+cx+1+dx+2b=limx0x2F(x)=12c=limx1(x+1)F(x)=1d=limx2(x+2)F(x)=14F(x)=ax+12x2+1x+114(x+2)limx+xF(x)=0=a+1a=1F(x)=1x+12x2+1x+114(x+2)S=n=1(1)nn+12n=1(1)nn2+n=1(1)nn+114n=1(1)nn+2weknown=1xnn=ln(1x)ifx∣<1n=1(1)nn=ln2n=1(1)nn+1=n=2(1)n1n=n=2(1)nn=(n=1(1)nn+1)=(ln2+1)=ln21n=1(1)nn+2=n=3+(1)n2n=n=3(1)nn=n=1(1)nn(1+12)=ln2+12letδ(x)=n=1(1)nnxwithx>1wehaveprovedthatδ(x)=(21x1)ξ(x)n=1(1)nn2=δ(2)=(211)ξ(2)=12π26=π212S=ln(2)π224+ln2114(ln2+12)=2ln2π2241+14ln218=94ln298π224

Leave a Reply

Your email address will not be published. Required fields are marked *