calculate-n-1-1-n-n-2-n-1-n-2- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 64820 by mathmax by abdo last updated on 22/Jul/19 calculate∑n=1∞(−1)nn2(n+1)(n+2) Commented by mathmax by abdo last updated on 22/Jul/19 letdecomposeF(x)=1x2(x+1)(x+2)⇒F(x)=ax+bx2+cx+1+dx+2b=limx→0x2F(x)=12c=limx→−1(x+1)F(x)=1d=limx→−2(x+2)F(x)=−14⇒F(x)=ax+12x2+1x+1−14(x+2)limx→+∞xF(x)=0=a+1⇒a=−1⇒F(x)=−1x+12x2+1x+1−14(x+2)⇒S=−∑n=1∞(−1)nn+12∑n=1∞(−1)nn2+∑n=1∞(−1)nn+1−14∑n=1∞(−1)nn+2weknow∑n=1∞xnn=−ln(1−x)if∣x∣<1⇒∑n=1∞(−1)nn=−ln2∑n=1∞(−1)nn+1=∑n=2∞(−1)n−1n=−∑n=2∞(−1)nn=−(∑n=1∞(−1)nn+1)=−(−ln2+1)=ln2−1∑n=1∞(−1)nn+2=∑n=3+∞(−1)n−2n=∑n=3∞(−1)nn=∑n=1∞(−1)nn−(−1+12)=−ln2+12letδ(x)=∑n=1∞(−1)nnxwithx>1wehaveprovedthatδ(x)=(21−x−1)ξ(x)⇒∑n=1∞(−1)nn2=δ(2)=(2−1−1)ξ(2)=−12π26=−π212⇒S=ln(2)−π224+ln2−1−14(−ln2+12)=2ln2−π224−1+14ln2−18=94ln2−98−π224 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-1-2n-1-1-n-n-3-n-1-2-Next Next post: Question-64823 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.