Menu Close

calculate-n-1-1-n-n-2-n-1-x-n-with-x-lt-1-2-find-the-value-of-n-1-1-n-2-n-1-2-n-




Question Number 37342 by math khazana by abdo last updated on 12/Jun/18
calculate Σ_(n=1) ^∞   (((−1)^n )/(n^2 (n+1))) x^n    with ∣x∣<1  2) find the value of   Σ_(n=1) ^∞    (1/(n^2 (n+1)2^n )) .
calculaten=1(1)nn2(n+1)xnwithx∣<12)findthevalueofn=11n2(n+1)2n.
Commented by prof Abdo imad last updated on 15/Jun/18
let decompose F(x)=(1/(x^2 (x+1)))  F(x)=(a/x) +(b/x^2 ) +(c/(x+1))  b=lim_(x→0) x^2 F(x)=1  c =lim_(x→−1) (x+1)F(x)=1 ⇒  F(x)= (a/x) +(1/x^2 ) +(1/(x+1))  F(1)=(1/2) =a +1 +(1/2) ⇒a=−1 ⇒  F(x)=−(1/x) +(1/x^2 ) +(1/(x+1)) ⇒  S(x)=Σ_(n=1) ^∞ (−1)^n {−(1/n) +(1/n^2 ) +(1/(n+1))}x^n   =−Σ_(n=1) ^∞  (((−1)^n )/n) x^n  +Σ_(n=1) ^∞ (((−1)^n )/n^2 ) x^n    + Σ_(n=1) ^∞    (((−1)^n )/(n+1))x^n    let w(x)=Σ_(n=1) ^∞ (((−1)^n )/n)x^n   w^′ (x)= Σ_(n=1) ^∞   (−1)^n x^(n−1) =(1/x){ Σ_(n=0) ^∞ (−x)^n  −1}  = (1/(x(x+1))) −(1/x) =(1/x){(1/(x+1)) −1}=(1/x)((−x)/(1+x))  = ((−1)/(1+x)) ⇒w(x)=−ln(1+x) +c butc=w(1)=0  ⇒w(x)= −ln(1+x)  Σ_(n=1) ^∞  (((−1)^n )/(n+1)) x^n  = Σ_(n=2) ^∞  (((−1)^(n−1) )/n) x^(n−1)   =−(1/x)Σ_(n=2) ^∞  (((−1)^n )/n) x^n   =−(1/x){ Σ_(n=1) ^∞  (((−1)^n )/n)x^n  +1}  =−(1/x){−ln(1+x)} −(1/x) = (1/x)ln(1+x) −(1/x)  let v(x)= Σ_(n=1) ^∞  (((−1)^n )/n^2 )x^n   v^′ (x) =Σ_(n=1) ^∞  (((−1)^n )/n)x^n =−ln(1+x) ⇒  v(x)= −∫ln(1+x)dx +λ  =−{ xln(1+x)−∫ (x/(1+x))dx} +λ  =xln(1+x) +∫  ((1+x−1)/(1+x))dx +λ  =xln(1+x)  +x −ln(1+x) +λ  =(x−1)ln(1+x) +x+λ but λ=v(0)=0 ⇒  v(x)=(x−1)ln(1+x) +x ⇒  S(x)=ln(1+x)+(1/x){ln(1+x)−1}  +(x−1)ln(1+x) +x   ⇒  S(x)=x ln(1+x) +(1/x)ln(1+x)  +x−(1/x)  = ((x^2  +1)/x)ln(1+x) +((x^2  −1)/x)  with −1<x<1 and  x≠0
letdecomposeF(x)=1x2(x+1)F(x)=ax+bx2+cx+1b=limx0x2F(x)=1c=limx1(x+1)F(x)=1F(x)=ax+1x2+1x+1F(1)=12=a+1+12a=1F(x)=1x+1x2+1x+1S(x)=n=1(1)n{1n+1n2+1n+1}xn=n=1(1)nnxn+n=1(1)nn2xn+n=1(1)nn+1xnletw(x)=n=1(1)nnxnw(x)=n=1(1)nxn1=1x{n=0(x)n1}=1x(x+1)1x=1x{1x+11}=1xx1+x=11+xw(x)=ln(1+x)+cbutc=w(1)=0w(x)=ln(1+x)n=1(1)nn+1xn=n=2(1)n1nxn1=1xn=2(1)nnxn=1x{n=1(1)nnxn+1}=1x{ln(1+x)}1x=1xln(1+x)1xletv(x)=n=1(1)nn2xnv(x)=n=1(1)nnxn=ln(1+x)v(x)=ln(1+x)dx+λ={xln(1+x)x1+xdx}+λ=xln(1+x)+1+x11+xdx+λ=xln(1+x)+xln(1+x)+λ=(x1)ln(1+x)+x+λbutλ=v(0)=0v(x)=(x1)ln(1+x)+xS(x)=ln(1+x)+1x{ln(1+x)1}+(x1)ln(1+x)+xS(x)=xln(1+x)+1xln(1+x)+x1x=x2+1xln(1+x)+x21xwith1<x<1andx0
Commented by prof Abdo imad last updated on 15/Jun/18
Σ_(n=1) ^∞   (1/(n^2 (n+1)2^n )) =S((1/2))  =(((1/4)+1)/(1/2))ln((3/2))  +(((1/4)−1)/(1/2))  =2.(5/4)ln((3/2)) +2.(((−3)/4))  =(5/2)ln((3/2)) −(3/2)
n=11n2(n+1)2n=S(12)=14+112ln(32)+14112=2.54ln(32)+2.(34)=52ln(32)32

Leave a Reply

Your email address will not be published. Required fields are marked *