calculate-n-1-1-n-n-2-n-1-x-n-with-x-lt-1-2-find-the-value-of-n-1-1-n-2-n-1-2-n- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 37342 by math khazana by abdo last updated on 12/Jun/18 calculate∑n=1∞(−1)nn2(n+1)xnwith∣x∣<12)findthevalueof∑n=1∞1n2(n+1)2n. Commented by prof Abdo imad last updated on 15/Jun/18 letdecomposeF(x)=1x2(x+1)F(x)=ax+bx2+cx+1b=limx→0x2F(x)=1c=limx→−1(x+1)F(x)=1⇒F(x)=ax+1x2+1x+1F(1)=12=a+1+12⇒a=−1⇒F(x)=−1x+1x2+1x+1⇒S(x)=∑n=1∞(−1)n{−1n+1n2+1n+1}xn=−∑n=1∞(−1)nnxn+∑n=1∞(−1)nn2xn+∑n=1∞(−1)nn+1xnletw(x)=∑n=1∞(−1)nnxnw′(x)=∑n=1∞(−1)nxn−1=1x{∑n=0∞(−x)n−1}=1x(x+1)−1x=1x{1x+1−1}=1x−x1+x=−11+x⇒w(x)=−ln(1+x)+cbutc=w(1)=0⇒w(x)=−ln(1+x)∑n=1∞(−1)nn+1xn=∑n=2∞(−1)n−1nxn−1=−1x∑n=2∞(−1)nnxn=−1x{∑n=1∞(−1)nnxn+1}=−1x{−ln(1+x)}−1x=1xln(1+x)−1xletv(x)=∑n=1∞(−1)nn2xnv′(x)=∑n=1∞(−1)nnxn=−ln(1+x)⇒v(x)=−∫ln(1+x)dx+λ=−{xln(1+x)−∫x1+xdx}+λ=xln(1+x)+∫1+x−11+xdx+λ=xln(1+x)+x−ln(1+x)+λ=(x−1)ln(1+x)+x+λbutλ=v(0)=0⇒v(x)=(x−1)ln(1+x)+x⇒S(x)=ln(1+x)+1x{ln(1+x)−1}+(x−1)ln(1+x)+x⇒S(x)=xln(1+x)+1xln(1+x)+x−1x=x2+1xln(1+x)+x2−1xwith−1<x<1andx≠0 Commented by prof Abdo imad last updated on 15/Jun/18 ∑n=1∞1n2(n+1)2n=S(12)=14+112ln(32)+14−112=2.54ln(32)+2.(−34)=52ln(32)−32 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-1-3-n-2-2n-1-2-Next Next post: calculate-I-a-0-2pi-1-acost-1-2acost-a-2-dt-1-if-a-lt-1-2-if-a-gt-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.