Menu Close

calculate-n-1-1-n-n-2-n-2-3-




Question Number 95217 by mathmax by abdo last updated on 24/May/20
calculate Σ_(n=1) ^∞   (((−1)^n )/(n^2 (n+2)^3 ))
calculaten=1(1)nn2(n+2)3
Answered by mathmax by abdo last updated on 25/May/20
let decompose F(x) =(1/(x^2 (x+2)^3 )) ⇒F(x) =Σ_(i=1) ^2  (a_i /x^i ) +Σ_(i=1) ^3  (b_i /((x+2)^i ))  a_i ?  we find D_1 (0) for f(x) =(x+2)^(−3)  ⇒f^′ (x) =−3(x+2)^(−4)   f(x) =f(o) +xf^′ (0) +(x^2 /(2!))ξ(x) =2^(−3)   −3.2^(−4)  x +(x^2 /2)ξ(x) ⇒  ((f(x))/x^2 ) =(2^(−3) /x^2 )−((3.2^(−4) )/x) +(x/2)ξ(x) ⇒a_1 =−(3/2^4 ) and a_2 =(1/2^3 )  b_i  we find D_2 (−2) for g(x) =x^(−2)  ⇒g^′ (x)=−2x^(−3)  ⇒g^((2)) (x)=6x^(−4)   g(x)=g(−2) +((x+2)/!)g^′ (−2) +(((x+2)^2 )/(2!))g^((2)) (−2) +(((x+2)^3 )/(3!))ξ(x)  =(−2)^(−2)  +(x+2)(−2)(−2)^(−3)  +(((x+2)^2 )/2)(6)(−2)^(−4)  +(((x+2)^3 )/6)ξ(x)  ((g(x))/((x+2)^3 )) =(((−2)^(−2) )/((x+2)^3 )) +(((−2)^(−2) )/((x+2)^2 )) +((3(−2)^(−4) )/(x+2)) +(1/6)ξ(x) ⇒  b_1 =(3/(16)) ,b_2 =(1/4)  , b_3 =(1/4) ⇒  F(x) =−(3/(16x)) +(1/(8x^2 )) +(3/(16(x+2))) +(1/(4(x+2)^2 )) +(1/(4(x+2)^3 )) ⇒  Σ_(k=1) ^n  (((−1)^k )/(k^2 (k+1)^3 )) =−(3/(16))Σ_(k=1) ^n  (((−1)^k )/k) +(1/8)Σ_(k=1) ^n  (((−1)^k )/k^2 ) +(3/(16))Σ_(k=1) ^n (((−1)^k )/(k+2))  +(1/4)Σ_(k=1) ^n  (((−1)^k )/((k+2)^2 )) +(1/4)Σ_(k=1) ^n  (((−1)^k )/((k+2)^3 ))  Σ_(k=1) ^n  (((−1)^k )/k)→−ln(2)(n→+∞)  Σ_(k=1) ^n  (((−1)^k )/k^2 ) →δ(2) =(2^(1−2) −1)ξ(2) =−(1/2)×(π^2 /6) =−(π^2 /(12))  Σ_(k=1) ^n  (((−1)^k )/(k+2)) =Σ_(k=3) ^(n+2)  (((−1)^k )/k) →Σ_(k=3) ^∞  (((−1)^k )/k)  =−ln2− (−1+(1/2))=−ln2+(1/2)  Σ_(k=1) ^n  (((−1)^k )/((k+2)^2 )) =Σ_(k=3) ^(n+2)  (((−1)^k )/k^2 ) →Σ_(k=3) ^∞  (((−1)^k )/k^2 ) =−(π^2 /(12)) −(−1+(1/4))  =(3/4)−(π^2 /(12))  Σ_(k=1) ^n  (((−1)^k )/((k+2)^3 )) =Σ_(k=3) ^(n+2)  (((−1)^k )/k^3 ) →Σ_(k=3) ^∞  (((−1)^k )/k^3 ) −(−1+(1/8))  =(2^(1−3) −1)ξ(3) +(7/8) =((1/4)−1)ξ(3)+(7/8) =(7/8)−(3/4)ξ(3)  the value of this sum is known...
letdecomposeF(x)=1x2(x+2)3F(x)=i=12aixi+i=13bi(x+2)iai?wefindD1(0)forf(x)=(x+2)3f(x)=3(x+2)4f(x)=f(o)+xf(0)+x22!ξ(x)=233.24x+x22ξ(x)f(x)x2=23x23.24x+x2ξ(x)a1=324anda2=123biwefindD2(2)forg(x)=x2g(x)=2x3g(2)(x)=6x4g(x)=g(2)+x+2!g(2)+(x+2)22!g(2)(2)+(x+2)33!ξ(x)=(2)2+(x+2)(2)(2)3+(x+2)22(6)(2)4+(x+2)36ξ(x)g(x)(x+2)3=(2)2(x+2)3+(2)2(x+2)2+3(2)4x+2+16ξ(x)b1=316,b2=14,b3=14F(x)=316x+18x2+316(x+2)+14(x+2)2+14(x+2)3k=1n(1)kk2(k+1)3=316k=1n(1)kk+18k=1n(1)kk2+316k=1n(1)kk+2+14k=1n(1)k(k+2)2+14k=1n(1)k(k+2)3k=1n(1)kkln(2)(n+)k=1n(1)kk2δ(2)=(2121)ξ(2)=12×π26=π212k=1n(1)kk+2=k=3n+2(1)kkk=3(1)kk=ln2(1+12)=ln2+12k=1n(1)k(k+2)2=k=3n+2(1)kk2k=3(1)kk2=π212(1+14)=34π212k=1n(1)k(k+2)3=k=3n+2(1)kk3k=3(1)kk3(1+18)=(2131)ξ(3)+78=(141)ξ(3)+78=7834ξ(3)thevalueofthissumisknown

Leave a Reply

Your email address will not be published. Required fields are marked *