calculate-n-1-1-n-n-2-n-2-3- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 95217 by mathmax by abdo last updated on 24/May/20 calculate∑n=1∞(−1)nn2(n+2)3 Answered by mathmax by abdo last updated on 25/May/20 letdecomposeF(x)=1x2(x+2)3⇒F(x)=∑i=12aixi+∑i=13bi(x+2)iai?wefindD1(0)forf(x)=(x+2)−3⇒f′(x)=−3(x+2)−4f(x)=f(o)+xf′(0)+x22!ξ(x)=2−3−3.2−4x+x22ξ(x)⇒f(x)x2=2−3x2−3.2−4x+x2ξ(x)⇒a1=−324anda2=123biwefindD2(−2)forg(x)=x−2⇒g′(x)=−2x−3⇒g(2)(x)=6x−4g(x)=g(−2)+x+2!g′(−2)+(x+2)22!g(2)(−2)+(x+2)33!ξ(x)=(−2)−2+(x+2)(−2)(−2)−3+(x+2)22(6)(−2)−4+(x+2)36ξ(x)g(x)(x+2)3=(−2)−2(x+2)3+(−2)−2(x+2)2+3(−2)−4x+2+16ξ(x)⇒b1=316,b2=14,b3=14⇒F(x)=−316x+18x2+316(x+2)+14(x+2)2+14(x+2)3⇒∑k=1n(−1)kk2(k+1)3=−316∑k=1n(−1)kk+18∑k=1n(−1)kk2+316∑k=1n(−1)kk+2+14∑k=1n(−1)k(k+2)2+14∑k=1n(−1)k(k+2)3∑k=1n(−1)kk→−ln(2)(n→+∞)∑k=1n(−1)kk2→δ(2)=(21−2−1)ξ(2)=−12×π26=−π212∑k=1n(−1)kk+2=∑k=3n+2(−1)kk→∑k=3∞(−1)kk=−ln2−(−1+12)=−ln2+12∑k=1n(−1)k(k+2)2=∑k=3n+2(−1)kk2→∑k=3∞(−1)kk2=−π212−(−1+14)=34−π212∑k=1n(−1)k(k+2)3=∑k=3n+2(−1)kk3→∑k=3∞(−1)kk3−(−1+18)=(21−3−1)ξ(3)+78=(14−1)ξ(3)+78=78−34ξ(3)thevalueofthissumisknown… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-by-Laplace-transform-y-5y-2y-x-2-cosx-with-y-o-1-and-y-0-2-Next Next post: calculste-n-0-n-2n-1-2-n-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.