Menu Close

calculate-n-1-1-n-n-3-n-1-




Question Number 57529 by maxmathsup by imad last updated on 06/Apr/19
calculate Σ_(n=1) ^∞     (((−1)^n )/(n^3 (n+1)))
calculaten=1(1)nn3(n+1)
Commented by maxmathsup by imad last updated on 09/Apr/19
let decompose F(x)=(1/((x+1)x^3 )) ⇒F(x)=(a/(x+1)) +(b/x) +(c/x^2 ) +(d/x^3 )  a =lim_(x→−1) (x+1)F(x)=−1  d =lim_(x→0)  x^3  F(x) =1 ⇒F(x) =((−1)/(x+1)) +(b/x) +(c/x^2 ) +(1/x^3 )  F(1) =(1/2) =−(1/2) +b+c +1 ⇒b+c =0 ⇒c=−b  F(−2) =(1/8) =1 −(b/2) +(c/4)−(1/8) ⇒1 =8−4b +2c−1 ⇒−6 =−4b +2c ⇒−3 =−2b +c  b =1     and c =−1 ⇒F(x) =−(1/(x+1)) +(1/x) −(1/x^2 ) +(1/x^3 ) ⇒  Σ_(n=1) ^∞  (((−1)^n )/((n+1)n^3 )) =−Σ_(n=1) ^∞  (((−1)^n )/(n+1)) +Σ_(n=1) ^∞  (((−1)^n )/n) − Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +Σ_(n=1) ^∞  (((−1)^n )/n^3 )  Σ_(n=1) ^∞   (((−1)^n )/(n+1)) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n) =Σ_(n=1) ^∞   (((−1)^(n−1) )/n) −1 =ln(2)−1  Σ_(n=1) ^∞   (((−1)^n )/n) =−ln(2)  let δ(x) =Σ_(n=1) ^∞  (((−1)^n )/n^x )  let determine δ(x) interms of ξ(x)    (x>1)  we have δ(x) =Σ_(n=1) ^∞    (1/(2^x  n^x )) −Σ_(n=0) ^∞   (1/((2n+1)^x )) and  Σ_(n=1) ^∞   (1/n^x ) =Σ_(n=1) ^∞   (1/(2^x n^x )) +Σ_(n=0) ^∞  (1/((2n+1)^x )) ⇒Σ_(n=0) ^∞   (1/((2n+1)^x )) =ξ(x)−2^(−x) ξ(x)  =(1−2^(−x) )ξ(x) ⇒δ(x) =2^(−x) ξ(x)−(1−2^(−x) )ξ(x)=(2^(−x) −1−2^(−x) )ξ(x)  =(2^(1−x) −1)ξ(x) ⇒ δ(x)=(2^(1−x) −1)ξ(x) ⇒  Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =δ(2) =(2^(1−2) −1)ξ(2) =((1/2)−1)(π^2 /6) =−(π^2 /(12))  ⇒  Σ_(n=1) ^∞   (((−1)^n )/n^3 ) =δ(3) =(2^(1−3) −1)ξ(3) =((1/4)−1)ξ(3)=−(3/4)ξ(3)  Σ_(n=1) ^∞    (((−1)^n )/((n+1)n^3 )) =1−ln(2) −ln(2) −(−(π^2 /(12)))−(3/4)ξ(3)  =1−2ln(2)+(π^2 /(12))  −(3/4) ξ(3) with ξ(3) =Σ_(n=1) ^∞  (1/n^3 ) .
letdecomposeF(x)=1(x+1)x3F(x)=ax+1+bx+cx2+dx3a=limx1(x+1)F(x)=1d=limx0x3F(x)=1F(x)=1x+1+bx+cx2+1x3F(1)=12=12+b+c+1b+c=0c=bF(2)=18=1b2+c4181=84b+2c16=4b+2c3=2b+cb=1andc=1F(x)=1x+1+1x1x2+1x3n=1(1)n(n+1)n3=n=1(1)nn+1+n=1(1)nnn=1(1)nn2+n=1(1)nn3n=1(1)nn+1=n=2(1)n1n=n=1(1)n1n1=ln(2)1n=1(1)nn=ln(2)letδ(x)=n=1(1)nnxletdetermineδ(x)intermsofξ(x)(x>1)wehaveδ(x)=n=112xnxn=01(2n+1)xandn=11nx=n=112xnx+n=01(2n+1)xn=01(2n+1)x=ξ(x)2xξ(x)=(12x)ξ(x)δ(x)=2xξ(x)(12x)ξ(x)=(2x12x)ξ(x)=(21x1)ξ(x)δ(x)=(21x1)ξ(x)n=1(1)nn2=δ(2)=(2121)ξ(2)=(121)π26=π212n=1(1)nn3=δ(3)=(2131)ξ(3)=(141)ξ(3)=34ξ(3)n=1(1)n(n+1)n3=1ln(2)ln(2)(π212)34ξ(3)=12ln(2)+π21234ξ(3)withξ(3)=n=11n3.

Leave a Reply

Your email address will not be published. Required fields are marked *