Menu Close

calculate-n-1-1-n-n-3-n-1-2-




Question Number 86958 by abdomathmax last updated on 01/Apr/20
calculate Σ_(n=1) ^∞  (((−1)^n )/(n^3 (n+1)^2 ))
calculaten=1(1)nn3(n+1)2
Commented by mathmax by abdo last updated on 04/Apr/20
let decompose F(x)=(1/(x^3 (x+1)^2 )) ⇒  F(x)=(a/x)+(b/x^2 ) +(c/x^3 ) +(d/(x+1)) +(e/((x+1)^2 ))  c=1  and e =−1 ⇒ F(x)=(a/x) +(b/x^2 )+(1/x^3 )+(d/(x+1))−(1/((x+1)^2 ))  lim_(x→+∞)  xF(x)=0 =a+d ⇒d=−a ⇒  F(x)=(a/x) +(b/x^2 ) +(1/x^3 )−(a/(x+1))−(1/((x+1)^2 ))  F(1) =(1/4) =a+b+1−(a/2)−(1/4) ⇒1 =4a+4b−2a−1 ⇒  2a+4b =2 ⇒a +2b =1  F(−2) =−(1/8) =−(a/2)+(b/4)−(1/8) +a−1 ⇒  −1 =−4a +2b−1+8a−8 ⇒0 =4a+2b −8 ⇒  2a+b−4 =0 ⇒2(1−2b)+b−4 =0 ⇒2−4b+b−4 =0 ⇒  −2b−2 =0 ⇒b=−1 ⇒a =1−2(−1) =1 ⇒  F(x)=(1/x)−(1/x^2 )+(1/x^3 )−(1/(x+1))−(1/((x+1)^2 )) ⇒  S =Σ_(n=1) ^∞  (−1)^n F(n)   =Σ_(n=1) ^∞  (((−1)^n )/n)−Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +Σ_(n=1) ^∞  (((−1)^n )/n^3 )−Σ_(n=1) ^∞  (((−1)^n )/(n+1))  −Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 ))  we have  Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)  let δ(x)=Σ_(n=1) ^∞  (((−1)^n )/n^x )  we have δ(x) =(2^(1−x) −1)ξ(x)  Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =δ(2)=(2^(−1) −1)ξ(2) =−(1/2)×(π^2 /6) =−(π^2 /(12))  Σ_(n=1) ^∞  (((−1)^n )/n^3 ) =(2^(1−3) −1)ξ(3) =((1/4)−1)ξ(3) =−(3/4)ξ(3)  Σ_(n=1) ^∞  (((−1)^n )/(n+1)) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n) =−Σ_(n=2) ^∞  (((−1)^n )/n)  =−(Σ_(n=1) ^∞  (((−1)^n )/n) +1) =−(−ln(2)+1) =ln(2)−1  Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 )) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n^2 ) =−Σ_(n=2) ^∞  (((−1)^n )/n^2 )  =−( Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +1) =−(−(π^2 /(12))+1) =(π^2 /(12))−1 ⇒  S =−ln(2) +(π^2 /(12))−(3/4)ξ(3)−ln(2)+1 −(π^2 /(12)) +1 ⇒  S =2−2ln(2)−(3/4)ξ(3)
letdecomposeF(x)=1x3(x+1)2F(x)=ax+bx2+cx3+dx+1+e(x+1)2c=1ande=1F(x)=ax+bx2+1x3+dx+11(x+1)2limx+xF(x)=0=a+dd=aF(x)=ax+bx2+1x3ax+11(x+1)2F(1)=14=a+b+1a2141=4a+4b2a12a+4b=2a+2b=1F(2)=18=a2+b418+a11=4a+2b1+8a80=4a+2b82a+b4=02(12b)+b4=024b+b4=02b2=0b=1a=12(1)=1F(x)=1x1x2+1x31x+11(x+1)2S=n=1(1)nF(n)=n=1(1)nnn=1(1)nn2+n=1(1)nn3n=1(1)nn+1n=1(1)n(n+1)2wehaven=1(1)nn=ln(2)letδ(x)=n=1(1)nnxwehaveδ(x)=(21x1)ξ(x)n=1(1)nn2=δ(2)=(211)ξ(2)=12×π26=π212n=1(1)nn3=(2131)ξ(3)=(141)ξ(3)=34ξ(3)n=1(1)nn+1=n=2(1)n1n=n=2(1)nn=(n=1(1)nn+1)=(ln(2)+1)=ln(2)1n=1(1)n(n+1)2=n=2(1)n1n2=n=2(1)nn2=(n=1(1)nn2+1)=(π212+1)=π2121S=ln(2)+π21234ξ(3)ln(2)+1π212+1S=22ln(2)34ξ(3)

Leave a Reply

Your email address will not be published. Required fields are marked *