calculate-n-1-1-n-n-3-n-1-2- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 86958 by abdomathmax last updated on 01/Apr/20 calculate∑n=1∞(−1)nn3(n+1)2 Commented by mathmax by abdo last updated on 04/Apr/20 letdecomposeF(x)=1x3(x+1)2⇒F(x)=ax+bx2+cx3+dx+1+e(x+1)2c=1ande=−1⇒F(x)=ax+bx2+1x3+dx+1−1(x+1)2limx→+∞xF(x)=0=a+d⇒d=−a⇒F(x)=ax+bx2+1x3−ax+1−1(x+1)2F(1)=14=a+b+1−a2−14⇒1=4a+4b−2a−1⇒2a+4b=2⇒a+2b=1F(−2)=−18=−a2+b4−18+a−1⇒−1=−4a+2b−1+8a−8⇒0=4a+2b−8⇒2a+b−4=0⇒2(1−2b)+b−4=0⇒2−4b+b−4=0⇒−2b−2=0⇒b=−1⇒a=1−2(−1)=1⇒F(x)=1x−1x2+1x3−1x+1−1(x+1)2⇒S=∑n=1∞(−1)nF(n)=∑n=1∞(−1)nn−∑n=1∞(−1)nn2+∑n=1∞(−1)nn3−∑n=1∞(−1)nn+1−∑n=1∞(−1)n(n+1)2wehave∑n=1∞(−1)nn=−ln(2)letδ(x)=∑n=1∞(−1)nnxwehaveδ(x)=(21−x−1)ξ(x)∑n=1∞(−1)nn2=δ(2)=(2−1−1)ξ(2)=−12×π26=−π212∑n=1∞(−1)nn3=(21−3−1)ξ(3)=(14−1)ξ(3)=−34ξ(3)∑n=1∞(−1)nn+1=∑n=2∞(−1)n−1n=−∑n=2∞(−1)nn=−(∑n=1∞(−1)nn+1)=−(−ln(2)+1)=ln(2)−1∑n=1∞(−1)n(n+1)2=∑n=2∞(−1)n−1n2=−∑n=2∞(−1)nn2=−(∑n=1∞(−1)nn2+1)=−(−π212+1)=π212−1⇒S=−ln(2)+π212−34ξ(3)−ln(2)+1−π212+1⇒S=2−2ln(2)−34ξ(3) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: A-particle-is-projected-upwards-with-a-velocity-of-96ms-1-In-addition-to-being-subject-to-gravity-it-is-acted-on-by-a-retardation-of-16t-where-t-is-the-time-from-the-start-of-the-motion-Next Next post: if-5-2-6-lt-x-find-min-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.