Menu Close

calculate-n-1-1-n-n-3-n-2n-1-Inspired-from-Sir-Ghaderi-s-post-




Question Number 162424 by mnjuly1970 last updated on 29/Dec/21
       calculate          Ω = Σ_(n=1) ^∞  (( (−1)^( n) n)/(3^( n)  (2n −1 ))) =?          − Inspired from Sir Ghaderi′s post−
calculateΩ=n=1(1)nn3n(2n1)=?InspiredfromSirGhaderispost
Answered by Ar Brandon last updated on 29/Dec/21
Ω=Σ_(n=1) ^∞ (((−1)^n n)/(3^n (2n−1)))=(1/2)Σ_(n=1) ^∞ (−(1/3))^n +(1/2)Σ_(n=1) ^∞ (−(1/3))^n (1/(2n−1))      =−(1/8)+(1/2)Σ_(n=1) ^∞ (−(1/3))^n ∫_0 ^1 x^(2n−2) dx=−(1/8)+(1/2)∫_0 ^1 (1/x^2 )Σ_(n=1) ^∞ (−(x^2 /3))^n dx      =−(1/8)−(1/2)∫_0 ^1 (1/x^2 )∙((x^2 /3)/(1+(x^2 /3)))dx=−(1/8)−(1/2)∫_0 ^1 (1/(x^2 +3))dx      =−(1/8)−[(1/(2(√3)))arctan((x/( (√3))))]_0 ^1 =−(1/8)−(π/(12(√3)))
Ω=n=1(1)nn3n(2n1)=12n=1(13)n+12n=1(13)n12n1=18+12n=1(13)n01x2n2dx=18+12011x2n=1(x23)ndx=1812011x2x231+x23dx=1812011x2+3dx=18[123arctan(x3)]01=18π123
Commented by mnjuly1970 last updated on 29/Dec/21
    thank you so much sir brandon
thankyousomuchsirbrandon
Commented by Ar Brandon last updated on 29/Dec/21
My pleasure, Sir !
Mypleasure,Sir!

Leave a Reply

Your email address will not be published. Required fields are marked *