Menu Close

calculate-n-1-1-n-n-4n-2-1-




Question Number 52305 by Abdo msup. last updated on 05/Jan/19
calculate Σ_(n=1) ^∞      (((−1)^n )/(n(4n^2 −1)))
calculaten=1(1)nn(4n21)
Commented by Abdo msup. last updated on 06/Jan/19
let decompose F(x)=(1/(x(4x^2 −1)))=(1/(x(2x+1)(2x−1))) ⇒  F(x)=(a/x) +(b/(2x+1)) +(c/(2x−1))  a=lim_(x→0) xF(x)=−1  b=lim_(x→−(1/2))   (2x+1)F(x) =(1/((−(1/2))(−2))) =1  c=lim_(x→(1/2))   (2x−1)F(x)=1 ⇒  F(x)=−(1/x) +(1/(2x+1)) +(1/(2x−1)) ⇒  Σ_(n=1) ^∞   (((−1)^n )/(n(4n^2 −1))) =−Σ_(n=1) ^∞  (((−1)^n )/n) +Σ_(n=1) ^∞  (((−1)^n )/(2n+1))  +Σ_(n=1) ^∞   (((−1)^n )/(2n−1))  but Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)  Σ_(n=1) ^∞  (((−1)^n )/(2n+1)) =Σ_(n=0) ^∞  (((−1)^n )/(2n+1)) −1=(π/4) −1  Σ_(n=1) ^∞  (((−1)^n )/(2n−1)) =Σ_(n=0) ^∞  (((−1)^(n−1) )/(2n+1)) =−(π/4) ⇒  Σ_(n=1) ^∞   (((−1)^n )/(n(4n^2 −1))) =ln(2)+(π/4) −1−(π/4)  =ln(2)−1 .
letdecomposeF(x)=1x(4x21)=1x(2x+1)(2x1)F(x)=ax+b2x+1+c2x1a=limx0xF(x)=1b=limx12(2x+1)F(x)=1(12)(2)=1c=limx12(2x1)F(x)=1F(x)=1x+12x+1+12x1n=1(1)nn(4n21)=n=1(1)nn+n=1(1)n2n+1+n=1(1)n2n1butn=1(1)nn=ln(2)n=1(1)n2n+1=n=0(1)n2n+11=π41n=1(1)n2n1=n=0(1)n12n+1=π4n=1(1)nn(4n21)=ln(2)+π41π4=ln(2)1.
Answered by Smail last updated on 06/Jan/19
Σ_(n=1) ^∞ (((−1)^n )/(n(4n^2 −1)))=Σ_(n=1) ^∞ (((−1)^n )/(n(2n+1)(2n−1)))  (1/(n(2n+1)(2n−1)))=(a/n)+(b/(2n+1))+(c/(2n−1))  a=−1 ,  b=1 , c=1  Σ_(n=1) ^∞ (((−1)^n )/(n(4n^2 −1)))=Σ_(n=1) ^∞ (((−1)^n )/(2n+1))+Σ_(n=1) ^∞ (((−1)^n )/(2n−1))−Σ_(n=1) ^∞ (((−1)^n )/n)  let put   p(x)=Σ_(n=1) ^∞ (((−1)^n )/(2n+1))x^(2n+1) +Σ_(n=1) ^∞ (((−1)^n )/(2n−1))x^(2n−1) +Σ_(n=1) ^∞ (((−1)^(n−1) )/n)x^n   =Σ_(n=1) ^∞ (((−1)^n )/(2n+1))x^(2n+1) +Σ_(n=0) ^∞ (((−1)^(n−1) )/(2n+1))x^(2n+1) +Σ_(n=1) ^∞ (((−1)^(n−1) )/n)x^n   =Σ_(n=1) ^∞ (((−1)^n )/(2n+1))x^(2n+1) −Σ_(n=0) ^∞ (((−1)^n )/(2n+1))x^(2n+1) +Σ_(n=1) ^∞ (((−1)^(n−1) )/n)x^n   =−x+ln(1+x) with  ∣x∣≤1  p(1)=ln(2)−1  Which means   Σ_(n=1) ^∞ (((−1)^n )/(n(4n^2 −1)))=ln(2)−1
n=1(1)nn(4n21)=n=1(1)nn(2n+1)(2n1)1n(2n+1)(2n1)=an+b2n+1+c2n1a=1,b=1,c=1n=1(1)nn(4n21)=n=1(1)n2n+1+n=1(1)n2n1n=1(1)nnletputp(x)=n=1(1)n2n+1x2n+1+n=1(1)n2n1x2n1+n=1(1)n1nxn=n=1(1)n2n+1x2n+1+n=0(1)n12n+1x2n+1+n=1(1)n1nxn=n=1(1)n2n+1x2n+1n=0(1)n2n+1x2n+1+n=1(1)n1nxn=x+ln(1+x)withx∣⩽1p(1)=ln(2)1Whichmeansn=1(1)nn(4n21)=ln(2)1
Commented by Abdo msup. last updated on 06/Jan/19
thanks sir Smail.
thankssirSmail.

Leave a Reply

Your email address will not be published. Required fields are marked *