Menu Close

calculate-n-1-1-n-n-by-using-digamma-




Question Number 174118 by Mathspace last updated on 25/Jul/22
calculate Σ_(n=1) ^∞  (((−1)^n )/n) by using  ψ  (digamma)
$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:{by}\:{using} \\ $$$$\psi\:\:\left({digamma}\right) \\ $$
Answered by mnjuly1970 last updated on 25/Jul/22
   Σ_(n=1) ^∞ (((−1)^( n) )/n) = Σ_(n=1) ^∞ (1/(2n)) −Σ_(n=1) ^∞ (( 1)/(2n−1))       = (1/2){Σ_(n=1) ^∞ (1/n) −Σ_(n=1) ^∞ (1/(n−(1/2)))}      = (1/2) lim_(n→∞) {γ−γ +Σ_(k=1) ^n ((1/k)−(1/(k−(1/2))))}      =  (γ/2) +(1/2) ψ ((1/2)) = (γ/2)+ (1/2)(−γ−2ln(2))       = −ln(2)  ■
$$\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}} }{{n}}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{n}}\:−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}} \\ $$$$\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left\{\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}}\:−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}−\frac{\mathrm{1}}{\mathrm{2}}}\right\} \\ $$$$\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{lim}_{{n}\rightarrow\infty} \left\{\gamma−\gamma\:+\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{k}−\frac{\mathrm{1}}{\mathrm{2}}}\right)\right\} \\ $$$$\:\:\:\:=\:\:\frac{\gamma}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\psi\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:\frac{\gamma}{\mathrm{2}}+\:\frac{\mathrm{1}}{\mathrm{2}}\left(−\gamma−\mathrm{2}{ln}\left(\mathrm{2}\right)\right) \\ $$$$\:\:\:\:\:=\:−{ln}\left(\mathrm{2}\right)\:\:\blacksquare \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *