Menu Close

calculate-n-1-1-n-n-n-1-n-2-




Question Number 41407 by maxmathsup by imad last updated on 06/Aug/18
calculate Σ_(n=1) ^∞    (((−1)^n )/(n(n+1)(n+2)))
calculaten=1(1)nn(n+1)(n+2)
Commented by maxmathsup by imad last updated on 08/Aug/18
  let f(x)= Σ_(n=1) ^∞    (((−1)^n )/(n(n+1)(n+2))) x^(n+2)   with ∣x∣<1  we have   f^′ (x)=Σ_(n=1) ^∞   (((−1)^n )/(n(n+1))) x^(n+1)  =Σ_(n=1) ^∞  (−1)^n {(1/n) −(1/(n+1))}x^(n+1)   =Σ_(n=1) ^∞   (((−1)^n )/n) x^(n+1)  −Σ_(n=1) ^∞  (((−1)^n )/(n+1)) x^(n+1)  but  Σ_(n=1) ^∞   (((−1)^n )/n) x^(n+1)  =−x Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n  =−xln(1+x)  Σ_(n=1) ^∞   (((−1)^n )/(n+1)) x^(n+1)  = Σ_(n=2) ^∞   (((−1)^(n−1) )/n) x^n  =ln(1+x)−1 ⇒  f^′ (x)=−xln(1+x)−ln(1+x) +1 ⇒f(x)= ∫_0 ^x {−(t+1)ln(1+t) +1}dt +c  c=f(o)=0 ⇒ f(x)=x− ∫_0 ^x (t+1)ln(t+1)dt but  ∫_0 ^x (t+1)ln(t+1)dt[=_(t+1 =u)    ∫_1 ^(x+1)  u ln(u)du  =[(u^2 /2)ln(u)]_1 ^(x+1)  −∫_1 ^(x+1)  (u/2) du = (((x+1)^2 )/2)ln(x+1) −(1/4)[u^2 ]_1 ^(x+1)   =(((x+1)^2 )/2)ln(x+1)−(1/4)(x+1)^2  +(1/4) ⇒  f(x)=x −(((x+1)^2 )/2)ln(x+1) +(((x+1)^2 )/4) −(1/4)  S=f(1) =1−2ln(2) +1−(1/4) =−2ln(2) +2−(1/4)  S =−2ln(2) +(7/4)
letf(x)=n=1(1)nn(n+1)(n+2)xn+2withx∣<1wehavef(x)=n=1(1)nn(n+1)xn+1=n=1(1)n{1n1n+1}xn+1=n=1(1)nnxn+1n=1(1)nn+1xn+1butn=1(1)nnxn+1=xn=1(1)n1nxn=xln(1+x)n=1(1)nn+1xn+1=n=2(1)n1nxn=ln(1+x)1f(x)=xln(1+x)ln(1+x)+1f(x)=0x{(t+1)ln(1+t)+1}dt+cc=f(o)=0f(x)=x0x(t+1)ln(t+1)dtbut0x(t+1)ln(t+1)dt[=t+1=u1x+1uln(u)du=[u22ln(u)]1x+11x+1u2du=(x+1)22ln(x+1)14[u2]1x+1=(x+1)22ln(x+1)14(x+1)2+14f(x)=x(x+1)22ln(x+1)+(x+1)2414S=f(1)=12ln(2)+114=2ln(2)+214S=2ln(2)+74

Leave a Reply

Your email address will not be published. Required fields are marked *