Menu Close

calculate-n-1-1-n-n-n-1-n-2-n-3-




Question Number 41408 by maxmathsup by imad last updated on 06/Aug/18
calculate   Σ_(n=1) ^∞     (((−1)^n )/(n(n+1)(n+2)(n+3)))
calculaten=1(1)nn(n+1)(n+2)(n+3)
Commented by maxmathsup by imad last updated on 07/Aug/18
let decompose F(x)= (1/(x(x+1)(x+2)(x+3)))  F(x)=(a/x) +(b/(x+1)) +(c/(x+2)) +(d/(x+3))  a =lim_(x→0) xF(x)=(1/6)  b =lim_(x→−1) (x+1)F(x) = −(1/2)  c =lim_(x→−2) (x+2)F(x) = (1/2)  d =lim_(x→−3) (x+3)F(x)=−(1/6) ⇒  F(x)=(1/(6x)) −(1/(2(x+1))) +(1/(2(x+2))) −(1/(6(x+3))) ⇒  S =(1/6) Σ_(n=1) ^∞   (((−1)^n )/n) −(1/2)Σ_(n=1) ^∞  (((−1)^n )/(n+1)) +(1/2) Σ_(n=1) ^∞  (((−1)^n )/(n+2)) −(1/6)Σ_(n=1) ^∞  (((−1)^n )/(n+3)) but  Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)  Σ_(n=1) ^∞  (((−1)^n )/(n+1)) =Σ_(n=2) ^∞   (((−1)^(n−1) )/n) =ln(2)−1  Σ_(n=1) ^∞   (((−1)^n )/(n+2)) =Σ_(n=3) ^∞   (((−1)^(n−2) )/n) =Σ_(n=3) ^∞  (((−1)^n )/n) =−ln(2)−{−1+(1/2)}  =−ln(2)+(1/2)  Σ_(n=1) ^∞   (((−1)^n )/(n+3)) =Σ_(n=4) ^∞  (((−1)^(n−3) )/n) =Σ_(n=4) ^∞  (((−1)^(n−1) )/n)  =ln(2)−{1−(1/2) +(1/3)} =ln(2)−((1/2) +(1/3))=ln(2)−(5/6) ⇒  S =−(1/6)ln(2) −(1/2)ln(2) +(1/2) −(1/2)ln(2) +(1/4) −(1/6)ln(2) +(5/(36))  S =(−(1/3) −1)ln(2)  +(3/4) +(5/(36)) =−(4/3)ln(2) + ((27+5)/(36)) =−(4/3)ln(2) + ((16)/(18))  S =(8/9) −(4/3)ln(2)
letdecomposeF(x)=1x(x+1)(x+2)(x+3)F(x)=ax+bx+1+cx+2+dx+3a=limx0xF(x)=16b=limx1(x+1)F(x)=12c=limx2(x+2)F(x)=12d=limx3(x+3)F(x)=16F(x)=16x12(x+1)+12(x+2)16(x+3)S=16n=1(1)nn12n=1(1)nn+1+12n=1(1)nn+216n=1(1)nn+3butn=1(1)nn=ln(2)n=1(1)nn+1=n=2(1)n1n=ln(2)1n=1(1)nn+2=n=3(1)n2n=n=3(1)nn=ln(2){1+12}=ln(2)+12n=1(1)nn+3=n=4(1)n3n=n=4(1)n1n=ln(2){112+13}=ln(2)(12+13)=ln(2)56S=16ln(2)12ln(2)+1212ln(2)+1416ln(2)+536S=(131)ln(2)+34+536=43ln(2)+27+536=43ln(2)+1618S=8943ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *