Menu Close

calculate-n-1-2-with-n-N-




Question Number 34719 by abdo mathsup 649 cc last updated on 10/May/18
calculate Γ(n+(1/2)) with n ∈N.
calculateΓ(n+12)withnN.
Commented by abdo mathsup 649 cc last updated on 12/May/18
we have Γ(x)=∫_0 ^∞  t^(x−1)  e^(−t) dt ⇒  Γ(n+(1/2))  = ∫_0 ^∞  t^(n−(1/2))  e^(−t) dt   =_(t=u^2 )    ∫_0 ^∞    (u^2 )^(n−(1/2))  e^(−u^2 )  2udu  = 2∫_0 ^∞    u^(2n)   e^(−u^2 ) du  let put  A_n   = ∫_0 ^∞ u^(2n)  e^(−u^2 ) du  by parts  α^′  =u^(2n)   and β=e^(−u^2 )   A_n  = [  (1/(2n+1)) u^(2n+1) e^(−u^2 ) ]_0 ^(+∞)   − ∫_0 ^∞  (1/(2n+1)) u^(2n+1)  (−2u)e^(−u^2 ) du  =  (2/(2n+1)) ∫_0 ^∞   u^(2n+2)  e^(−u^2 ) du  = (2/(2n+1)) A_(n+1)   ⇒ A_(n+1) = ((2n+1)/2) A_n    Π_(k=0) ^(n−1)  A_(k+1)  = ((Π_(k=0) ^(n−1) (2k+1))/2^n ) Π_(k=0) ^(n−1)   A_n  ⇒  A_n   = ((Π_(k=0) ^(n−1)  (2k+1))/2^n ) A_0     but A_0 =∫_0 ^∞  e^(−u^2 ) du =((√π)/2)  ⇒ A_n   = ((√π)/2^(n+1) )  ( 1.3.5....(2n−1))  = ((√π)/2^(n+1) )  ((1.2.3.4.....(2n))/(2^n n!))  =(((√π)   (2n)!)/(2^(2n+1)  (n!)))
wehaveΓ(x)=0tx1etdtΓ(n+12)=0tn12etdt=t=u20(u2)n12eu22udu=20u2neu2duletputAn=0u2neu2dubypartsα=u2nandβ=eu2An=[12n+1u2n+1eu2]0+012n+1u2n+1(2u)eu2du=22n+10u2n+2eu2du=22n+1An+1An+1=2n+12Ank=0n1Ak+1=k=0n1(2k+1)2nk=0n1AnAn=k=0n1(2k+1)2nA0butA0=0eu2du=π2An=π2n+1(1.3.5.(2n1))=π2n+11.2.3.4..(2n)2nn!=π(2n)!22n+1(n!)
Commented by abdo mathsup 649 cc last updated on 12/May/18
Γ(n+(1/2)) =2A_n   ⇒ Γ(n+(1/2)) = ((√π)/2^(2n) )  (((2n)!)/(n!)) .
Γ(n+12)=2AnΓ(n+12)=π22n(2n)!n!.
Answered by alex041103 last updated on 10/May/18
By definition Γ(k)=(k−1)!=(k−1)(k−2)!.  The value Γ(n+(1/2))=(n−(1/2))!  ⇒(n−(1/2))!=(n−(1/2))(n−1−(1/2))!=...=  =((1/2))!Π_(k=2) ^n ((2k−1)/2)=((√π)/2) (1/2^(n−1) )Π_(k=1) ^(n−1) (2k+1)  ⇒Γ(n+(1/2))=((√π)/2^n ) Π_(k=1) ^(n−1) (2k+1)
BydefinitionΓ(k)=(k1)!=(k1)(k2)!.ThevalueΓ(n+12)=(n12)!(n12)!=(n12)(n112)!===(12)!nk=22k12=π212n1n1k=1(2k+1)Γ(n+12)=π2nn1k=1(2k+1)
Commented by NECx last updated on 10/May/18
welcome back mr Alex
welcomebackmrAlex
Commented by alex041103 last updated on 10/May/18
I′m sorry. I made a mistake.  The answer should be this:  ((√π)/2^n ) Π_(k=1) ^(n−1) (2k+1)
Imsorry.Imadeamistake.Theanswershouldbethis:π2nn1k=1(2k+1)

Leave a Reply

Your email address will not be published. Required fields are marked *