Question Number 34719 by abdo mathsup 649 cc last updated on 10/May/18

Commented by abdo mathsup 649 cc last updated on 12/May/18
![we have Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt ⇒ Γ(n+(1/2)) = ∫_0 ^∞ t^(n−(1/2)) e^(−t) dt =_(t=u^2 ) ∫_0 ^∞ (u^2 )^(n−(1/2)) e^(−u^2 ) 2udu = 2∫_0 ^∞ u^(2n) e^(−u^2 ) du let put A_n = ∫_0 ^∞ u^(2n) e^(−u^2 ) du by parts α^′ =u^(2n) and β=e^(−u^2 ) A_n = [ (1/(2n+1)) u^(2n+1) e^(−u^2 ) ]_0 ^(+∞) − ∫_0 ^∞ (1/(2n+1)) u^(2n+1) (−2u)e^(−u^2 ) du = (2/(2n+1)) ∫_0 ^∞ u^(2n+2) e^(−u^2 ) du = (2/(2n+1)) A_(n+1) ⇒ A_(n+1) = ((2n+1)/2) A_n Π_(k=0) ^(n−1) A_(k+1) = ((Π_(k=0) ^(n−1) (2k+1))/2^n ) Π_(k=0) ^(n−1) A_n ⇒ A_n = ((Π_(k=0) ^(n−1) (2k+1))/2^n ) A_0 but A_0 =∫_0 ^∞ e^(−u^2 ) du =((√π)/2) ⇒ A_n = ((√π)/2^(n+1) ) ( 1.3.5....(2n−1)) = ((√π)/2^(n+1) ) ((1.2.3.4.....(2n))/(2^n n!)) =(((√π) (2n)!)/(2^(2n+1) (n!)))](https://www.tinkutara.com/question/Q34860.png)
Commented by abdo mathsup 649 cc last updated on 12/May/18

Answered by alex041103 last updated on 10/May/18

Commented by NECx last updated on 10/May/18

Commented by alex041103 last updated on 10/May/18
