calculate-n-1-2n-1-1-n-n-3-n-1-2- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 64819 by mathmax by abdo last updated on 22/Jul/19 calculate∑n=1∞(2n+1)(−1)nn3(n+1)2 Commented by mathmax by abdo last updated on 24/Jul/19 letS=∑n=1∞(−1)n2n+1n3(n+1)2letdecomposeF(x)=2x+1x3(x+1)2F(x)=ax+bx2+cx3+dx+1+e(x+1)2c=limx→0x3F(x)=1e=limx→−1(x+1)2F(x)=−1−1=1⇒F(x)=ax+bx2+1x3+dx+1+1(x+1)2limx→+∞xF(x)=0=a+d⇒d=−a⇒F(x)=ax+bx2+1x3−ax+1+1(x+1)2F(1)=34=a+b+1−a2+14⇒3=4a+4b+4−2a+1⇒3=2a+4b+5⇒2a+4b=−2⇒a+2b=−1F(−2)=−3−8=38=−a2+b4−18+a+1⇒3=−4a+2b−1+8a+8⇒3=4a+2b+7⇒4a+2b=−4⇒2a+b=−2⇒b=−2−2a⇒a+2(−2−2a)=−1⇒a−4−4a=−1⇒−3a=3⇒a=−1⇒b=−2−2(−1)=0⇒F(x)=−1x+1x3+1x+1+1(x+1)2⇒S=−∑n=1∞(−1)nn+∑n=1∞(−1)nn3+∑n=1∞(−1)nn+1+∑n=1∞(−1)n(n+1)2weknow∑n=0∞xnn=−ln(1−x)if∣x∣<1⇒∑n=1∞(−1)nn=−ln(2)alsoδ(x)=∑n=1∞(−1)nnx=(21−x−1)ξ(x)⇒∑n=1∞(−1)nn3=(21−3−1)ξ(3)=(14−1)ξ(3)=−34ξ(3)∑n=1∞(−1)nn+1=∑n=2∞(−1)n−1n=∑n=1∞(−1)n−1n−1=ln(2)−1∑n=1∞(−1)n(n+1)2=∑n=2∞(−1)n−1n2=−∑n=2∞(−1)nn2=−(∑n=1∞(−1)nn2+1)=−(21−2−1)ξ(2)−1=12ξ(2)−1=12π26−1=π212−1⇒S=ln(2)−34ξ(3)+ln(2)−1+π212−1S=2ln(2)−34ξ(3)+π22−2. Commented by mathmax by abdo last updated on 24/Jul/19 S=2ln(2)−34ξ(3)+π212−2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-130350Next Next post: f-x-4x-2-1-2x-2-1-prove-that-1-f-x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.