Menu Close

calculate-n-1-2n-1-1-n-n-3-n-1-2-




Question Number 64819 by mathmax by abdo last updated on 22/Jul/19
calculate Σ_(n=1) ^∞    (((2n+1)(−1)^n )/(n^3 (n+1)^2 ))
calculaten=1(2n+1)(1)nn3(n+1)2
Commented by mathmax by abdo last updated on 24/Jul/19
let S =Σ_(n=1) ^∞  (−1)^n   ((2n+1)/(n^3 (n+1)^2 )) letdecompose F(x) =((2x+1)/(x^3 (x+1)^2 ))  F(x) =(a/x) +(b/x^2 ) +(c/x^3 ) +(d/(x+1)) +(e/((x+1)^2 ))  c =lim_(x→0)  x^3  F(x) =1  e =lim_(x→−1) (x+1)^2  F(x) =((−1)/(−1)) =1 ⇒  F(x) =(a/x) +(b/x^2 ) +(1/x^3 ) +(d/(x+1)) +(1/((x+1)^2 ))  lim_(x→+∞)  xF(x) =0 =a+d ⇒d =−a ⇒  F(x) =(a/x) +(b/x^2 ) +(1/x^3 ) −(a/(x+1)) +(1/((x+1)^2 ))  F(1) =(3/4) =a+b +1−(a/2) +(1/4) ⇒3 =4a+4b+4−2a +1 ⇒  3=2a +4b+5 ⇒2a+4b =−2 ⇒a+2b =−1  F(−2) =((−3)/(−8)) =(3/8) =−(a/2) +(b/4) −(1/8) +a+1 ⇒  3 =−4a +2b−1 +8a+8 ⇒3 =4a +2b+7 ⇒4a+2b =−4 ⇒  2a+b =−2 ⇒b =−2−2a ⇒a +2(−2−2a) =−1 ⇒  a−4−4a =−1 ⇒−3a =3 ⇒a =−1 ⇒b =−2−2(−1) =0 ⇒  F(x) =−(1/x) +(1/x^3 ) +(1/(x+1)) +(1/((x+1)^2 ))  ⇒  S =−Σ_(n=1) ^∞  (((−1)^n )/n) +Σ_(n=1) ^∞  (((−1)^n )/n^3 ) +Σ_(n=1) ^∞  (((−1)^n )/(n+1)) +Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 ))  we know Σ_(n=0) ^∞  (x^n /n) =−ln(1−x) if ∣x∣<1 ⇒Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)  also δ(x) =Σ_(n=1) ^∞  (((−1)^n )/n^x ) =(2^(1−x) −1)ξ(x) ⇒  Σ_(n=1) ^∞  (((−1)^n )/n^3 ) =(2^(1−3) −1)ξ(3) =((1/4)−1)ξ(3) =−(3/4)ξ(3)  Σ_(n=1) ^∞  (((−1)^n )/(n+1)) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) −1 =ln(2)−1  Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 )) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n^2 ) =−Σ_(n=2) ^∞  (((−1)^n )/n^2 )  =−(Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +1) =−(2^(1−2) −1)ξ(2)−1  =(1/2)ξ(2)−1 =(1/2)(π^2 /6) −1 =(π^2 /(12)) −1⇒  S =ln(2)−(3/4)ξ(3) +ln(2)−1+(π^2 /(12)) −1  S=2ln(2)−(3/4)ξ(3)+(π^2 /2) −2 .
letS=n=1(1)n2n+1n3(n+1)2letdecomposeF(x)=2x+1x3(x+1)2F(x)=ax+bx2+cx3+dx+1+e(x+1)2c=limx0x3F(x)=1e=limx1(x+1)2F(x)=11=1F(x)=ax+bx2+1x3+dx+1+1(x+1)2limx+xF(x)=0=a+dd=aF(x)=ax+bx2+1x3ax+1+1(x+1)2F(1)=34=a+b+1a2+143=4a+4b+42a+13=2a+4b+52a+4b=2a+2b=1F(2)=38=38=a2+b418+a+13=4a+2b1+8a+83=4a+2b+74a+2b=42a+b=2b=22aa+2(22a)=1a44a=13a=3a=1b=22(1)=0F(x)=1x+1x3+1x+1+1(x+1)2S=n=1(1)nn+n=1(1)nn3+n=1(1)nn+1+n=1(1)n(n+1)2weknown=0xnn=ln(1x)ifx∣<1n=1(1)nn=ln(2)alsoδ(x)=n=1(1)nnx=(21x1)ξ(x)n=1(1)nn3=(2131)ξ(3)=(141)ξ(3)=34ξ(3)n=1(1)nn+1=n=2(1)n1n=n=1(1)n1n1=ln(2)1n=1(1)n(n+1)2=n=2(1)n1n2=n=2(1)nn2=(n=1(1)nn2+1)=(2121)ξ(2)1=12ξ(2)1=12π261=π2121S=ln(2)34ξ(3)+ln(2)1+π2121S=2ln(2)34ξ(3)+π222.
Commented by mathmax by abdo last updated on 24/Jul/19
S =2ln(2)−(3/4)ξ(3)+(π^2 /(12)) −2 .
S=2ln(2)34ξ(3)+π2122.

Leave a Reply

Your email address will not be published. Required fields are marked *