Menu Close

calculate-n-1-2n-1-x-2n-x-n-1-1-n-x-




Question Number 98118 by abdomathmax last updated on 11/Jun/20
calculate Σ_(n=1) ^∞  (ξ(2n)−1)x^(2n)   ξ(x)=Σ_(n=1) ^∞  (1/n^x )
calculaten=1(ξ(2n)1)x2nξ(x)=n=11nx
Answered by maths mind last updated on 11/Jun/20
ζ(2n)−1=Σ_(k≥2) (1/k^(2n) )  =Σ_(n≥1) .Σ_(k≥2) (x^(2n) /k^(2n) )  =Σ_(k≥2) .Σ_(n≥1) ((x^2 /k^2 ))^n   =Σ_(k≥2) ((x^2 /k^2 )).(1/(1−(x^2 /k^2 )))  =Σ_(k≥2) (x^2 /(k^2 −x^2 ))=S(x)  for x∉Z  πxcot(πx)=1+2Σ_(k≥1) (x^2 /(x^2 −k^2 ))  S(x)=((1−πxcot(πx))/2)+(x^2 /(x^2 −1))=Σ_(n≥1) (ζ(2n)−1)x^(2n)
ζ(2n)1=k21k2n=n1.k2x2nk2n=k2.n1(x2k2)n=k2(x2k2).11x2k2=k2x2k2x2=S(x)forxZπxcot(πx)=1+2k1x2x2k2S(x)=1πxcot(πx)2+x2x21=n1(ζ(2n)1)x2n
Commented by maths mind last updated on 11/Jun/20
x∈]1,2[
x]1,2[
Commented by mathmax by abdo last updated on 11/Jun/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *