Menu Close

calculate-n-1-3-n-2-2n-1-2-




Question Number 37341 by math khazana by abdo last updated on 12/Jun/18
calculate Σ_(n=1) ^∞     (3/(n^2 (2n+1)^2 ))
calculaten=13n2(2n+1)2
Commented by math khazana by abdo last updated on 14/Jun/18
let S=Σ_(n=1) ^∞   (3/(n^2 (2n+1)^2 ))  S=lim_(n→+∞) S_n    with S_n =Σ_(k=1) ^n   (3/(n^2 (2n+1)^2 ))  let decompose F(x)= (3/(x^2 (2x+1)^2 ))  F(x)= (a/x) +(b/x^2 ) +(c/(2x+1)) +(d/((2x+1)^2 ))  b=lim_(x→0) x^2 F(x)=3  d=lim_(x→−(1/2))  (2x+1)^2 F(x)= 12  F(x) = (a/x) +(3/x^2 )  +(c/(2x+1)) + ((12)/((2x+1)^2 ))  F(1)=(1/3)= a +3 +(c/3)  +(4/3) ⇒  1=3a +9 +c +4 =3a+c +13 ⇒3a+c=−12  F(−1)= 3 =−a +3 −c +12 =−a−c +15⇒  −a−c=−12 ⇒a+c =12⇒c=12−a ⇒  3a +12−a =−12 ⇒2a=−24 ⇒a =−12  c =24 ⇒  F(x) = ((−12)/x) +(3/x^2 ) +((24)/(2x+1)) +((12)/((2x+1)^2 ))  S_n = Σ_(k=1) ^n F(k) ={−12 Σ_(k=1) ^n  (1/k)  +24Σ_(k=1) ^n  (1/(2k+1))}  +{3 Σ_(k=1) ^n  (1/k^2 )  +12 Σ_(k=1) ^n   (1/((2k+1)^2 ))}=A_n  +B_n   but3 Σ_(k=1) ^∞  (1/k^2 ) =3.(π^2 /6) =(π^2 /2)  Σ_(k =1) ^∞   (1/((2k+1)^2 )) =Σ_(k=0) ^∞  (1/((2k+1)^2 )) −1  = Σ_(k=1) ^∞   (1/k^2 ) −(1/4)Σ_(k=1) ^∞  (1/k^2 )−1 =(3/4) (π^2 /6)−1 =(π^2 /8) −1  lim_(n→∞)  B_n  = (π^2 /2) +12((π^2 /8) −1) =(π^2 /2) +((3π^2 )/4) −12  =((5π^2 )/4) −12  also we have  Σ_(k=1) ^n  (1/k) =H_n   Σ_(k=1) ^n   (1/(2k+1)) =Σ_(k=0) ^n  (1/(2k+1)) −1= 1 +(1/3) +(1/4) +...+(1/(2n+1))−1  =1 +(1/2) +(1/3) +(1/4) +.... +(1/(2n)) +(1/(2n+1)) −(1/2)−(1/4)  −...−(1/(2n))−1 = H_(2n+1)  −(1/2) H_n  −1  A_n = −12 H_n   +24( H_(2n+1)  −(1/2)H_n −1)  =−12H_n  +24H_(2n+1)  −12 H_n  −24  =24( H_(2n+1)  −H_(2n) ) −24  but  H_(2n+1)  −H_n =ln(2n+1) +γ +o((1/n))−ln(n)−γ −o((1/n))  =ln(((2n+1)/n)) +o((1/n))→ln(2)(n→+∞) so  lim _(n→+∞) A_n   =24 ln(2) −24 so  lim_(n→+∞)  S_n  = 24ln(2)−24 +((5π^2 )/4) −12  S=24ln(2) +((5π^2 )/4) −36 .
letS=n=13n2(2n+1)2S=limn+SnwithSn=k=1n3n2(2n+1)2letdecomposeF(x)=3x2(2x+1)2F(x)=ax+bx2+c2x+1+d(2x+1)2b=limx0x2F(x)=3d=limx12(2x+1)2F(x)=12F(x)=ax+3x2+c2x+1+12(2x+1)2F(1)=13=a+3+c3+431=3a+9+c+4=3a+c+133a+c=12F(1)=3=a+3c+12=ac+15ac=12a+c=12c=12a3a+12a=122a=24a=12c=24F(x)=12x+3x2+242x+1+12(2x+1)2Sn=k=1nF(k)={12k=1n1k+24k=1n12k+1}+{3k=1n1k2+12k=1n1(2k+1)2}=An+Bnbut3k=11k2=3.π26=π22k=11(2k+1)2=k=01(2k+1)21=k=11k214k=11k21=34π261=π281limnBn=π22+12(π281)=π22+3π2412=5π2412alsowehavek=1n1k=Hnk=1n12k+1=k=0n12k+11=1+13+14++12n+11=1+12+13+14+.+12n+12n+1121412n1=H2n+112Hn1An=12Hn+24(H2n+112Hn1)=12Hn+24H2n+112Hn24=24(H2n+1H2n)24butH2n+1Hn=ln(2n+1)+γ+o(1n)ln(n)γo(1n)=ln(2n+1n)+o(1n)ln(2)(n+)solimn+An=24ln(2)24solimn+Sn=24ln(2)24+5π2412S=24ln(2)+5π2436.

Leave a Reply

Your email address will not be published. Required fields are marked *