Menu Close

calculate-n-1-4n-1-n-2-3n-1-2-




Question Number 32998 by abdo imad last updated on 09/Apr/18
calculate  Σ_(n=1) ^∞     ((4n+1)/(n^2 (3n+1)^2 ))  .
calculaten=14n+1n2(3n+1)2.
Commented by abdo imad last updated on 15/Apr/18
let decompose F(x)= ((4x+1)/(x^2 (3x+1)^2 ))  F(x) = (a/x) +(b/x^2 )  + (c/(3x+1)) +(d/((3x+1)^2 ))  b =lim_(x→0)  x^2 F(x)= 1  d=lim_(x→−(1/3))  (3x+1)^2 F(x) = ((−(4/3)+1)/(1/9)) =9.(−(1/3))=−3  F(x)= (a/x) +(1/x^2 )  +(c/(3x+1)) −(3/((3x+1)^2 ))  lim_(x→∞)  xF(x)= 0 = a+c ⇒c=−a ⇒  F(x)= (a/x) +(1/x^2 ) −(a/(3x+1)) −(3/((3x+1)^2 ))  F(1) = (5/(16)) = a +1 −(a/4) −(3/(16)) =(3/4)a  +((13)/(16)) ⇒  5=12a +13⇒12a=5−13=−8 ⇒a=−(8/(12)) =−(2/3)  F(x) = ((−2)/(3x))  +(1/x^2 ) + (2/(3(3x+1))) −(3/((3x+1)^2 ))  Σ_(k=1) ^n    ((4k+1)/(k^2 (3k+1)^2 )) =−(2/3) Σ_(k=1) ^n  (1/k)  +Σ_(k=1) ^n  (1/k^2 )  + (2/3) Σ_(k=1) ^n  (1/(3k+1)) −3 Σ_(k=1) ^n  (1/((3k+1)^2 ))  =(2/3)Σ_(k=1) ^n  ( (1/(3k+1)) −(1/k)) +Σ_(k=1) ^n  (1/k^2 ) −3 Σ_(k=1) ^n   (1/((3k+1)^2 ))  but  Σ_(k=1) ^n   (1/(3k+1)) =(1/4) +(1/7) + (1/(10)) +....+(1/(3n+1))  Σ_(k=1) ^n   (1/k) = Σ_(k=3p) (...) +Σ_(k=3p+1) (...) +Σ_(k=3p+2) (...)  = Σ_(p=1) ^([(n/3)])   (1/(3p))   +Σ_(k=0) ^([((n−1)/3)])   (1/(3p+1)) + Σ_(p=0) ^([((n−2)/3)])   (1/(3p+2))  ...be continued...
letdecomposeF(x)=4x+1x2(3x+1)2F(x)=ax+bx2+c3x+1+d(3x+1)2b=limx0x2F(x)=1d=limx13(3x+1)2F(x)=43+119=9.(13)=3F(x)=ax+1x2+c3x+13(3x+1)2limxxF(x)=0=a+cc=aF(x)=ax+1x2a3x+13(3x+1)2F(1)=516=a+1a4316=34a+13165=12a+1312a=513=8a=812=23F(x)=23x+1x2+23(3x+1)3(3x+1)2k=1n4k+1k2(3k+1)2=23k=1n1k+k=1n1k2+23k=1n13k+13k=1n1(3k+1)2=23k=1n(13k+11k)+k=1n1k23k=1n1(3k+1)2butk=1n13k+1=14+17+110+.+13n+1k=1n1k=k=3p()+k=3p+1()+k=3p+2()=p=1[n3]13p+k=0[n13]13p+1+p=0[n23]13p+2becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *