Menu Close

calculate-n-1-cos-n-n-2-




Question Number 144701 by mathmax by abdo last updated on 28/Jun/21
calculate Σ_(n=1) ^∞  ((cos(nθ))/n^2 )
calculaten=1cos(nθ)n2
Answered by Dwaipayan Shikari last updated on 28/Jun/21
Σ_(n=1) ^∞ ((sin (nθ))/n)=(1/(2i))Σ_(n=1) ^∞ (((e^(iθ) )^n )/n)−(((e^(−iθ) )^n )/n)  =−(1/(2i))log (((1−e^(iθ) )/(1−e^(−iθ) )))=((π−θ)/2)  Σ_(n=1) ^∞ ∫_0 ^θ ((sin (nθ))/n)=((2πθ−θ^2 )/4)  Σ_(n=1) ^∞ ((cos (0))/n^2 )−((cos (nθ))/n^2 )=((2πθ−θ^2 )/4)  Σ_(n=1) ^∞ ((cos (nθ))/n^2 )=(π^2 /6)−((πθ)/2)+(θ^2 /4)
n=1sin(nθ)n=12in=1(eiθ)nn(eiθ)nn=12ilog(1eiθ1eiθ)=πθ2n=10θsin(nθ)n=2πθθ24n=1cos(0)n2cos(nθ)n2=2πθθ24n=1cos(nθ)n2=π26πθ2+θ24
Answered by mathmax by abdo last updated on 28/Jun/21
ϕ(θ)=Σ_(n=1) ^∞  ((cos(nθ))/n^2 ) ⇒ϕ^′ (θ)=−Σ_(n=1) ^∞  ((sin(nθ))/n)  =−Im(Σ_(n=1) ^∞  (e^(inθ) /n))=−Im(Σ_(n=1) ^∞  (((e^(iθ) )^n )/n))=−Im(log(1−e^(iθ) ))  we have log(1−e^(iθ) )=log(1−cosθ−isinθ)  =log(2sin^2 ((θ/2))−2isin((θ/2))cos((θ/2)))=log(−2isin((θ/2))e^((iθ)/2) )  =log2 +log(−i)+log(sin((θ/2)))+((iθ)/2)  =log(2sin((θ/2)))−((iπ)/2)+((iθ)/2) ⇒ϕ^′ (θ)=((π−θ)/2) ⇒  ϕ(θ)=(π/2)θ−(θ^2 /4) +K  but K=ϕ(0)=(π^2 /6) ⇒  ϕ(θ)=−(θ^2 /4)+((πθ)/2) +(π^2 /6)
φ(θ)=n=1cos(nθ)n2φ(θ)=n=1sin(nθ)n=Im(n=1einθn)=Im(n=1(eiθ)nn)=Im(log(1eiθ))wehavelog(1eiθ)=log(1cosθisinθ)=log(2sin2(θ2)2isin(θ2)cos(θ2))=log(2isin(θ2)eiθ2)=log2+log(i)+log(sin(θ2))+iθ2=log(2sin(θ2))iπ2+iθ2φ(θ)=πθ2φ(θ)=π2θθ24+KbutK=φ(0)=π26φ(θ)=θ24+πθ2+π26

Leave a Reply

Your email address will not be published. Required fields are marked *