Question Number 144701 by mathmax by abdo last updated on 28/Jun/21
$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{n}\theta\right)}{\mathrm{n}^{\mathrm{2}} } \\ $$
Answered by Dwaipayan Shikari last updated on 28/Jun/21
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\:\left({n}\theta\right)}{{n}}=\frac{\mathrm{1}}{\mathrm{2}{i}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left({e}^{{i}\theta} \right)^{{n}} }{{n}}−\frac{\left({e}^{−{i}\theta} \right)^{{n}} }{{n}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}{i}}\mathrm{log}\:\left(\frac{\mathrm{1}−{e}^{{i}\theta} }{\mathrm{1}−{e}^{−{i}\theta} }\right)=\frac{\pi−\theta}{\mathrm{2}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\theta} \frac{\mathrm{sin}\:\left({n}\theta\right)}{{n}}=\frac{\mathrm{2}\pi\theta−\theta^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{cos}\:\left(\mathrm{0}\right)}{{n}^{\mathrm{2}} }−\frac{\mathrm{cos}\:\left({n}\theta\right)}{{n}^{\mathrm{2}} }=\frac{\mathrm{2}\pi\theta−\theta^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{cos}\:\left({n}\theta\right)}{{n}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\frac{\pi\theta}{\mathrm{2}}+\frac{\theta^{\mathrm{2}} }{\mathrm{4}} \\ $$
Answered by mathmax by abdo last updated on 28/Jun/21
$$\varphi\left(\theta\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{n}\theta\right)}{\mathrm{n}^{\mathrm{2}} }\:\Rightarrow\varphi^{'} \left(\theta\right)=−\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{sin}\left(\mathrm{n}\theta\right)}{\mathrm{n}} \\ $$$$=−\mathrm{Im}\left(\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{e}^{\mathrm{in}\theta} }{\mathrm{n}}\right)=−\mathrm{Im}\left(\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(\mathrm{e}^{\mathrm{i}\theta} \right)^{\mathrm{n}} }{\mathrm{n}}\right)=−\mathrm{Im}\left(\mathrm{log}\left(\mathrm{1}−\mathrm{e}^{\mathrm{i}\theta} \right)\right) \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{log}\left(\mathrm{1}−\mathrm{e}^{\mathrm{i}\theta} \right)=\mathrm{log}\left(\mathrm{1}−\mathrm{cos}\theta−\mathrm{isin}\theta\right) \\ $$$$=\mathrm{log}\left(\mathrm{2sin}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)−\mathrm{2isin}\left(\frac{\theta}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\theta}{\mathrm{2}}\right)\right)=\mathrm{log}\left(−\mathrm{2isin}\left(\frac{\theta}{\mathrm{2}}\right)\mathrm{e}^{\frac{\mathrm{i}\theta}{\mathrm{2}}} \right) \\ $$$$=\mathrm{log2}\:+\mathrm{log}\left(−\mathrm{i}\right)+\mathrm{log}\left(\mathrm{sin}\left(\frac{\theta}{\mathrm{2}}\right)\right)+\frac{\mathrm{i}\theta}{\mathrm{2}} \\ $$$$=\mathrm{log}\left(\mathrm{2sin}\left(\frac{\theta}{\mathrm{2}}\right)\right)−\frac{\mathrm{i}\pi}{\mathrm{2}}+\frac{\mathrm{i}\theta}{\mathrm{2}}\:\Rightarrow\varphi^{'} \left(\theta\right)=\frac{\pi−\theta}{\mathrm{2}}\:\Rightarrow \\ $$$$\varphi\left(\theta\right)=\frac{\pi}{\mathrm{2}}\theta−\frac{\theta^{\mathrm{2}} }{\mathrm{4}}\:+\mathrm{K}\:\:\mathrm{but}\:\mathrm{K}=\varphi\left(\mathrm{0}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\Rightarrow \\ $$$$\varphi\left(\theta\right)=−\frac{\theta^{\mathrm{2}} }{\mathrm{4}}+\frac{\pi\theta}{\mathrm{2}}\:+\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$