Question Number 45518 by maxmathsup by imad last updated on 14/Oct/18

Commented by maxmathsup by imad last updated on 23/Oct/18
![we have proved that Σ_(n=1) ^∞ ((cos(nx))/n) =ln(sin((x/2))) ⇒ ∫_0 ^x (Σ_(n=1) ^∞ ((cos(nt))/n))dt =∫_0 ^x ln(sin((t/2)))dt ⇒ Σ_(n=1) ^∞ (1/n)[(1/n)sin(nt)]_0 ^x = ∫_0 ^x ln(sin((t/2)))dt⇒ Σ_(n=1) ^∞ ((sin(nx))/n^2 ) = ∫_0 ^x ln(sin((t/2)))dt=_((t/2)=u ) 2 ∫_0 ^(x/2) ln(sin(u))du also we have Σ_(n=1) ^∞ ((sin(nx))/n) =((π−x)/2) ⇒ ∫_0 ^x (Σ_(n=1) ^∞ ((sin(nt))/n))dt =∫_0 ^x ((π−t)/2)dt ⇒ Σ_(n=1) ^∞ (1/n) ∫_0 ^x sin(nt)dt =((πx)/2) −(1/2) (x^2 /2) ⇒ Σ_(n=1) ^∞ (1/n)[−(1/n)cos(nt)]_0 ^x =((πx)/2) −(x^2 /4) ⇒ Σ_(n=1) ^∞ (1/n^2 ){1−cos(nx)} =((πx)/2) −(x^2 /4) ⇒ Σ_(n=1) ^∞ ((cos(nx))/n^2 ) =(π^2 /6) −((πx)/2) +(x^2 /4) .](https://www.tinkutara.com/question/Q46318.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18

Answered by Meritguide1234 last updated on 15/Oct/18

Commented by maxmathsup by imad last updated on 21/Oct/18
