Menu Close

calculate-n-1-F-n-n-3-n-




Question Number 170580 by mnjuly1970 last updated on 27/May/22
     calculate        Σ_(n=1) ^∞  (( F_n )/(n.3^( n) )) = ?
calculaten=1Fnn.3n=?
Answered by Mathspace last updated on 27/May/22
f_n is fefimed by f_0 =0 and?f_1 =1  and  f_(n+2) =f_n +f_(n+1)   ce→r^2 −r−1=0  Δ=1+4=5 ⇒r_1 =((1+(√5))/2)  r_2 =((1−(√5))/2)  ⇒f_n =ar_1 ^n +br_2 ^n   f_0 =0=a+b  f_1 =1=r_1 a+r_2 b=(r_1 −r_2 )a  =(√5)a ⇒a=(1/( (√5))) and b=−(1/( (√5)))  ⇒f_n  =(1/( (√5)))r_1 ^n −(1/( (√5)))r_2 ^n  ⇒  Σ_(n=1) ^∞  (f_n /(n3^n ))=(1/( (√5)))Σ_(n=1) ^∞  (1/n)((r_1 /3))^n   −(1/( (√5)))Σ_(n=1) ^∞ (1/n)((r_2 /3))^n   let s(x)=Σ_(n=1) ^∞ (x^n /n) ⇒  s(x)=−ln(1−x) ⇒  Σ_(n=1) ^∞  (f_n /(n3^n ))=−(1/( (√5)))ln(1−(r_1 /3))  +(1/( (√5)))ln(1−(r_2 /3))  =(1/( (√5)))ln(((3−r_2 )/(3−r_1 )))  =(1/( (√5)))ln(((3−((1−(√5))/2))/(3−((1+(√5))/2))))  =(1/( (√5)))ln(((5+(√5))/(5−(√5))))=(1/( (√5)))ln((((√5)+1)/( (√5)−1)))        0
fnisfefimedbyf0=0and?f1=1andfn+2=fn+fn+1cer2r1=0Δ=1+4=5r1=1+52r2=152fn=ar1n+br2nf0=0=a+bf1=1=r1a+r2b=(r1r2)a=5aa=15andb=15fn=15r1n15r2nn=1fnn3n=15n=11n(r13)n15n=11n(r23)nlets(x)=n=1xnns(x)=ln(1x)n=1fnn3n=15ln(1r13)+15ln(1r23)=15ln(3r23r1)=15ln(315231+52)=15ln(5+555)=15ln(5+151)0
Commented by mnjuly1970 last updated on 28/May/22
thanks alot...
thanksalot
Commented by Tawa11 last updated on 08/Oct/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *