Menu Close

calculate-n-1-sin-npi-3-2n-1-2-




Question Number 191369 by mnjuly1970 last updated on 23/Apr/23
     calculate         𝛗= Ξ£_(n=1) ^∞ ((  sin(((nΟ€)/3) ))/((2n + 1 )^( 2) ))= ?
$$ \\ $$$$\:\:\:{calculate} \\ $$$$ \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\:{sin}\left(\frac{{n}\pi}{\mathrm{3}}\:\right)}{\left(\mathrm{2}{n}\:+\:\mathrm{1}\:\right)^{\:\mathrm{2}} }=\:? \\ $$$$ \\ $$
Answered by namphamduc last updated on 24/Apr/23
S=Ξ£_(n=1) ^∞ ((sin(((nΟ€)/3)))/((2n+1)^2 ))=β„‘Ξ£_(n=1) ^∞ (((e^((iΟ€)/3) )^n )/( (2n+1)^2 ))  tanh^(βˆ’1) (x)=Ξ£_(n=0) ^∞ (x^(2n+1) /(2n+1))β‡’((tanh^(βˆ’1) (x))/x)=Ξ£_(n=0) ^∞ (x^(2n) /(2n+1))β‡’((tanh^(βˆ’1) (x))/x)βˆ’1=Ξ£_(n=1) ^∞ (x^(2n) /(2n+1))  β‡’Ξ£_(n=1) ^∞ (x^(2n) /((2n+1)^2 ))=(1/(2x))(Li_2 (x)βˆ’Li_2 (βˆ’x))βˆ’1  β‡’S=β„‘((1/(2e^((iΟ€)/6) ))(Li_2 (e^((iΟ€)/6) )βˆ’Li_2 (βˆ’e^((iΟ€)/6) )))  =β„‘((1/(((√3)+i)))((Ο€^2 /6)+i(4/3)G))=β„‘((1/4)((√3)βˆ’i)((Ο€^2 /6)+i(4/3)G))  =βˆ’(Ο€^2 /(24))+(G/( (√3)))
$${S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\left(\frac{{n}\pi}{\mathrm{3}}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\Im\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left({e}^{\frac{{i}\pi}{\mathrm{3}}} \right)^{{n}} }{\:\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{tanh}^{βˆ’\mathrm{1}} \left({x}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\Rightarrow\frac{\mathrm{tanh}^{βˆ’\mathrm{1}} \left({x}\right)}{{x}}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}}\Rightarrow\frac{\mathrm{tanh}^{βˆ’\mathrm{1}} \left({x}\right)}{{x}}βˆ’\mathrm{1}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}{x}}\left(\mathrm{Li}_{\mathrm{2}} \left({x}\right)βˆ’\mathrm{Li}_{\mathrm{2}} \left(βˆ’{x}\right)\right)βˆ’\mathrm{1} \\ $$$$\Rightarrow{S}=\Im\left(\frac{\mathrm{1}}{\mathrm{2}{e}^{\frac{{i}\pi}{\mathrm{6}}} }\left(\mathrm{Li}_{\mathrm{2}} \left({e}^{\frac{{i}\pi}{\mathrm{6}}} \right)βˆ’\mathrm{Li}_{\mathrm{2}} \left(βˆ’{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)\right)\right) \\ $$$$=\Im\left(\frac{\mathrm{1}}{\left(\sqrt{\mathrm{3}}+{i}\right)}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+{i}\frac{\mathrm{4}}{\mathrm{3}}{G}\right)\right)=\Im\left(\frac{\mathrm{1}}{\mathrm{4}}\left(\sqrt{\mathrm{3}}βˆ’{i}\right)\left(\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+{i}\frac{\mathrm{4}}{\mathrm{3}}{G}\right)\right) \\ $$$$=βˆ’\frac{\pi^{\mathrm{2}} }{\mathrm{24}}+\frac{{G}}{\:\sqrt{\mathrm{3}}} \\ $$
Commented by mnjuly1970 last updated on 24/Apr/23
$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *