Menu Close

calculate-n-1-sin-npi-3-2n-1-2-




Question Number 191369 by mnjuly1970 last updated on 23/Apr/23
     calculate         ๐›—= ฮฃ_(n=1) ^โˆž ((  sin(((nฯ€)/3) ))/((2n + 1 )^( 2) ))= ?
calculateฯ•=โˆ‘โˆžn=1sin(nฯ€3)(2n+1)2=?
Answered by namphamduc last updated on 24/Apr/23
S=ฮฃ_(n=1) ^โˆž ((sin(((nฯ€)/3)))/((2n+1)^2 ))=โ„‘ฮฃ_(n=1) ^โˆž (((e^((iฯ€)/3) )^n )/( (2n+1)^2 ))  tanh^(โˆ’1) (x)=ฮฃ_(n=0) ^โˆž (x^(2n+1) /(2n+1))โ‡’((tanh^(โˆ’1) (x))/x)=ฮฃ_(n=0) ^โˆž (x^(2n) /(2n+1))โ‡’((tanh^(โˆ’1) (x))/x)โˆ’1=ฮฃ_(n=1) ^โˆž (x^(2n) /(2n+1))  โ‡’ฮฃ_(n=1) ^โˆž (x^(2n) /((2n+1)^2 ))=(1/(2x))(Li_2 (x)โˆ’Li_2 (โˆ’x))โˆ’1  โ‡’S=โ„‘((1/(2e^((iฯ€)/6) ))(Li_2 (e^((iฯ€)/6) )โˆ’Li_2 (โˆ’e^((iฯ€)/6) )))  =โ„‘((1/(((โˆš3)+i)))((ฯ€^2 /6)+i(4/3)G))=โ„‘((1/4)((โˆš3)โˆ’i)((ฯ€^2 /6)+i(4/3)G))  =โˆ’(ฯ€^2 /(24))+(G/( (โˆš3)))
S=โˆ‘โˆžn=1sin(nฯ€3)(2n+1)2=โ„‘โˆ‘โˆžn=1(eiฯ€3)n(2n+1)2tanhโˆ’1(x)=โˆ‘โˆžn=0x2n+12n+1โ‡’tanhโˆ’1(x)x=โˆ‘โˆžn=0x2n2n+1โ‡’tanhโˆ’1(x)xโˆ’1=โˆ‘โˆžn=1x2n2n+1โ‡’โˆ‘โˆžn=1x2n(2n+1)2=12x(Li2(x)โˆ’Li2(โˆ’x))โˆ’1โ‡’S=โ„‘(12eiฯ€6(Li2(eiฯ€6)โˆ’Li2(โˆ’eiฯ€6)))=โ„‘(1(3+i)(ฯ€26+i43G))=โ„‘(14(3โˆ’i)(ฯ€26+i43G))=โˆ’ฯ€224+G3
Commented by mnjuly1970 last updated on 24/Apr/23

Leave a Reply

Your email address will not be published. Required fields are marked *