Menu Close

calculate-n-2-1-n-2-1-2-




Question Number 31979 by abdo imad last updated on 17/Mar/18
calculate  Σ_(n=2) ^∞    (1/((n^2 −1)^2 ))  .
calculaten=21(n21)2.
Commented by abdo imad last updated on 22/Mar/18
let put S_n =Σ_(k=2) ^n   (1/((k^2  −1)^2 ))  S_n = Σ_(k=2) ^n   (1/((k−1)^2 (k+1)^2 )) let decompose  F(x) = (1/((x−1)^2 (x+1)^2 )) = (a/(x−1)) +(b/((x−1)^2 )) +(c/((x+1))) +(d/((x+1)^2 ))  b=lim_(x→1) (x−1)^2 F(x)=(1/4)  d=lim_(x→−1) (x+1)^2 F(x)=(1/4) we have F(−x)=F(x)⇒  ((−a)/(x+1)) −(c/(x−1)) +(b/((x+1)^2 )) +(d/((x−1)^2 )) =F(x) ⇒c=−a ⇒F(0)  F(x)= (a/(x−1)) −(a/(x+1)) + (1/(4(x−1)^2 )) + (1/(4(x+1)^2 ))  F(0) = 1 =−2a  +(1/2) ⇒2a =−(1/2) ⇒a=−(1/4) and  F(x) = ((−1)/(4(x−1))) + (1/(4(x+1))) + (1/(4(x−1)^2 )) + (1/(4(x+1)^2 ))  4S_n =4Σ_(k=2) ^(n )  F(k)=−Σ_(k=2) ^n  (1/(k−1)) +Σ_(k=2) ^n  (1/(k+1)) +Σ_(k=2) ^n  (1/((k−1)^2 ))  +Σ_(k=2) ^n  (1/((k+1)^2 ))   =−Σ_(k=1) ^(n−1)   (1/k)  +Σ_(k=3) ^(n+1)   (1/k)   + Σ_(k=1) ^(n−1)   (1/k^2 )  +Σ_(k=3) ^(n+1)  (1/k^2 )  =−H_(n−1)  +H_(n+1)  −(3/2) +  ξ_(n−1) (2) +ξ_(n+1) (2) −(5/4)  =H_(n+1) −H_(n−1)   −((11)/4)  +ξ_(n−1) (2) +ξ_(n+1) (2) but  H_(n+1 )  −H_(n−1)  _(n→∞) →0   ξ_(n−1) (2) →(π^2 /6)  ξ_(n+1) (2)→ (π^2 /6) ⇒ 4S_n  → (π^2 /3) −((11)/4) ⇒  lim_(n→∞)  S_n = (π^2 /(12))  −((11)/(16)) . let remember that H_n =Σ_(k=1) ^n  (1/k)  and ξ_n (x) =Σ_(k=1) ^n  (1/k^x ) .
letputSn=k=2n1(k21)2Sn=k=2n1(k1)2(k+1)2letdecomposeF(x)=1(x1)2(x+1)2=ax1+b(x1)2+c(x+1)+d(x+1)2b=limx1(x1)2F(x)=14d=limx1(x+1)2F(x)=14wehaveF(x)=F(x)ax+1cx1+b(x+1)2+d(x1)2=F(x)c=aF(0)F(x)=ax1ax+1+14(x1)2+14(x+1)2F(0)=1=2a+122a=12a=14andF(x)=14(x1)+14(x+1)+14(x1)2+14(x+1)24Sn=4k=2nF(k)=k=2n1k1+k=2n1k+1+k=2n1(k1)2+k=2n1(k+1)2=k=1n11k+k=3n+11k+k=1n11k2+k=3n+11k2=Hn1+Hn+132+ξn1(2)+ξn+1(2)54=Hn+1Hn1114+ξn1(2)+ξn+1(2)butHn+1Hn1n0ξn1(2)π26ξn+1(2)π264Snπ23114limnSn=π2121116.letrememberthatHn=k=1n1kandξn(x)=k=1n1kx.

Leave a Reply

Your email address will not be published. Required fields are marked *