Menu Close

calculate-n-2-1-n-n-2-1-




Question Number 43259 by maxmathsup by imad last updated on 08/Sep/18
calculate Σ_(n=2) ^∞   (((−1)^n )/(n^2 −1))
calculaten=2(1)nn21
Commented by maxmathsup by imad last updated on 09/Sep/18
let S = Σ_(n=2) ^∞    (((−1)^n )/(n^2 −1)) ⇒S=(1/2) Σ_(n=2) ^∞  (−1)^n {(1/(n−1)) −(1/(n+1))}   ⇒ 2S = Σ_(n=2) ^∞   (((−1)^n )/(n−1)) −Σ_(n=2) ^∞    (((−1)^n )/(n+1))  but    Σ_(n=2) ^∞   (((−1)^n )/(n−1)) = Σ_(n=1) ^∞   (((−1)^(n+1) )/n) =Σ_(n=1) ^∞    (((−1)^(n−1) )/n) =ln(2)  (Σ_(n=1) ^∞   (x^n /n) = −ln(1−x)  with −1<x<1)  also  Σ_(n=2) ^∞   (((−1)^n )/(n+1)) =Σ_(n=3) ^∞   (((−1)^(n−1) )/n) = Σ_(n=1) ^∞    (((−1)^(n−1) )/n) −{1 −(1/2)}  =ln(2) −(1/2)  ⇒ 2S = ln(2) −ln(2)+(1/2)  ⇒ S =(1/4) .
letS=n=2(1)nn21S=12n=2(1)n{1n11n+1}2S=n=2(1)nn1n=2(1)nn+1butn=2(1)nn1=n=1(1)n+1n=n=1(1)n1n=ln(2)(n=1xnn=ln(1x)with1<x<1)alson=2(1)nn+1=n=3(1)n1n=n=1(1)n1n{112}=ln(2)122S=ln(2)ln(2)+12S=14.

Leave a Reply

Your email address will not be published. Required fields are marked *