Menu Close

calculate-n-2-2n-1-n-4-n-2-




Question Number 45240 by maxmathsup by imad last updated on 10/Oct/18
calculate Σ_(n=2) ^∞   ((2n+1)/(n^4 −n^2 ))
calculaten=22n+1n4n2
Commented by maxmathsup by imad last updated on 11/Oct/18
let decompose F(x)=((2x+1)/(x^4 −x^2 )) =((2x+1)/(x^2 (x−1)(x+1))) ⇒  F(x)=(a/x) +(b/x^2 ) +(c/(x−1)) +(d/(x+1))  b =lim_(x→0) x^2 F(x) =−1  c =lim_(x→1) (x−1)F(x)=(3/2)  d =lim_(x→−1) (x+1)F(x) =((−1)/(−2)) =(1/2) ⇒F(x)=(a/x) −(1/x^2 ) +(3/(2(x−1))) +(1/(2(x+1)))  F(2) = (5/(4.3)) =(5/(12)) =(a/2) −(1/4) +(3/2) +(1/6)  ⇒5 =6a−3 +18 +2 ⇒5=6a +17 ⇒  6a=−12 ⇒a =−2 ⇒F(x)=−(2/x) −(1/x^2 ) +(3/(2(x−1))) +(1/(2(x+1)))  let S_n =Σ_(k=2) ^∞  ((2k+1)/(k^4 −k^2 )) ⇒S_n =Σ_(k=2) ^n  F(k)  =−2 Σ_(k=2) ^n  (1/k) −Σ_(k=2) ^n  (1/k^2 ) +(3/2) Σ_(k=2) ^n  (1/(k−1)) +(1/2)Σ_(k=2) ^n  (1/(k+1)) but  Σ_(k=2) ^n  (1/k)=H_n −(3/2)  Σ_(k=2) ^n  =ξ_n (2)−1  Σ_(k=2) ^n  (1/(k−1)) =Σ_(k=1) ^(n−1)  (1/k) =H_(n−1)   Σ_(k=2) ^n   (1/(k+1)) =Σ_(k=3) ^(n+1)  (1/k)=H_(n+1)  −1−(1/2)−(1/3) =H_(n+1) −(3/2) −(1/3) =H_(n+1) −((11)/6) ⇒  S_n =−2H_n   +3  +ξ_n (2)−1 +(3/2) H_(n−1)  +(1/2) H_(n+1) −((11)/(12))  =−2H_n  +(3/2) H_(n−1) +(1/2) H_(n+1)  +ξ_n (2)+2−((11)/(12)) ⇒  S_n  =−2(ln(n) +γ +o((1/n)))+(3/2)( ln(n−1)+γ +o((1/n)))+(1/2)(ln(n)+γ +o((1/n)))+ξ_n (2)+((13)/(12))  =−2ln(n) +(3/2)ln(n−1) +(1/2)ln(n) +o((1/n)) +ξ_n (2)+((13)/(12))  =ln((√((n−1)^3 ))(√n))−ln(n^2 ) +o((1/n))+ξ_n (2)+((13)/(12))  =ln{(((n−1)(√(n(n−1))))/n^2 )}+o((1/n))+ξ_n (2)+((13)/(12)) ⇒  lim_(n→+∞)  S_n =ξ(2)+((13)/(12)) =(π^2 /6) +((13)/(12)) .
letdecomposeF(x)=2x+1x4x2=2x+1x2(x1)(x+1)F(x)=ax+bx2+cx1+dx+1b=limx0x2F(x)=1c=limx1(x1)F(x)=32d=limx1(x+1)F(x)=12=12F(x)=ax1x2+32(x1)+12(x+1)F(2)=54.3=512=a214+32+165=6a3+18+25=6a+176a=12a=2F(x)=2x1x2+32(x1)+12(x+1)letSn=k=22k+1k4k2Sn=k=2nF(k)=2k=2n1kk=2n1k2+32k=2n1k1+12k=2n1k+1butk=2n1k=Hn32k=2n=ξn(2)1k=2n1k1=k=1n11k=Hn1k=2n1k+1=k=3n+11k=Hn+111213=Hn+13213=Hn+1116Sn=2Hn+3+ξn(2)1+32Hn1+12Hn+11112=2Hn+32Hn1+12Hn+1+ξn(2)+21112Sn=2(ln(n)+γ+o(1n))+32(ln(n1)+γ+o(1n))+12(ln(n)+γ+o(1n))+ξn(2)+1312=2ln(n)+32ln(n1)+12ln(n)+o(1n)+ξn(2)+1312=ln((n1)3n)ln(n2)+o(1n)+ξn(2)+1312=ln{(n1)n(n1)n2}+o(1n)+ξn(2)+1312limn+Sn=ξ(2)+1312=π26+1312.
Answered by ajfour last updated on 11/Oct/18
Σ_(n=2) ^∞   ((2n+1)/(n^2 (n−1)(n+1)))  =Σ(((n+1)+(n−1))/((n−1)nn(n+1)))+(1/2)Σ(((n+1)−(n−1))/((n−1)nn(n+1)))  =Σ(1/((n−1)n^2 ))+Σ(1/(n^2 (n+1)))           +(1/2)Σ(1/((n−1)n^2 ))−(1/2)Σ(1/(n^2 (n+1)))  =(3/2)Σ(1/((n−1)n^2 ))+(1/2)Σ(1/(n^2 (n+1)))  =(3/4)Σ((1/((n−1)n))−(1/n^2 ))+(1/4)Σ((1/n^2 )−(1/(n(n+1))))  =(3/4)Σ((1/(n−1))−(1/n))−(1/4)Σ((1/n)−(1/(n+1)))             −(1/2)Σ(1/n^2 )  =(3/4)(1−(1/2)+(1/2)−(1/3)+..)−(1/4)((1/2)−(1/3)+(1/3)−(1/4)+..)             −(1/2)((1/4)+(1/9)+...)   = (3/4)−(1/8)−(1/2)((1/4)+(1/9)+(1/(16))+..)  ln (1−x)=−(x+(x^2 /2)+(x^3 /3)+...)  ∫_0 ^(  1)  ((ln (1−x))/x)dx=−(1+(1/4)+(1/9)+(1/(16))+..)  so   Σ_(n=2) ^∞   ((2n+1)/(n^4 −n^2 )) = (3/4)−(1/8)−(1/2)[1+∫_0 ^(  1) ((ln (1−x))/x)dx]  ..... (cant solve the integral, sir ).
n=22n+1n2(n1)(n+1)=Σ(n+1)+(n1)(n1)nn(n+1)+12Σ(n+1)(n1)(n1)nn(n+1)=Σ1(n1)n2+Σ1n2(n+1)+12Σ1(n1)n212Σ1n2(n+1)=32Σ1(n1)n2+12Σ1n2(n+1)=34Σ(1(n1)n1n2)+14Σ(1n21n(n+1))=34Σ(1n11n)14Σ(1n1n+1)12Σ1n2=34(112+1213+..)14(1213+1314+..)12(14+19+)=341812(14+19+116+..)ln(1x)=(x+x22+x33+)01ln(1x)xdx=(1+14+19+116+..)son=22n+1n4n2=341812[1+01ln(1x)xdx]..(cantsolvetheintegral,sir).
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
((2n+1)/(n^2 (n+1)(n−1)))=(a/n)+(b/n^2 )+(c/(n+1))+(d/(n−1))  2n+1=an(n+1)(n−1)+b(n+1)(n−1)+cn^2 (n−1)+dn^2 (n+1)  put n=0   1=b(−1)  b=−1  put n−1=0  3=d×1×2   d=(3/2)  put n+1=0  −2+1=c×(−1)^2 ×(−2)  −1=−2c   c=(1/2)  2n+1=an(n+1)(n−1)+b(n+1)(n−1)+cn^2 (n−1)+dn^2 (n+1)  2n+1=a(n^3 −n)+(−1)(n^2 −1)+(1/2)n^2 (n−1)+(3/2)n^2 (n+1)  2n+1=n^3 (a+(1/2)+(3/2))+n^2 (−1−(1/2)+(3/2))+n(−a)+1  a+2=0  a=−2  =Σ_(n=2) ^∞ (((−2)/n)+((−1)/n^2 )+((1/2)/(n+1))+((3/2)/(n−1)))  =S_1 +S_2 +S_3 +S_4   S_1 =−2Σ_(n=2) ^∞ (1/n)  S_1 =−2{((1/1)+(1/2)+(1/3)+...∞)−(1/1)}       =−2(γ−1)=−2γ+1  γ=Eulers constant  S_2 =−1Σ_(n=2) ^∞ (1/n^2 )          =−1{((1/1^2 )+(1/2^2 )+(1/3^2 )+..∞)−(1/1)}             =−((π^2 /6)−1)=1−(π^2 /6)  S_3 =(1/2)Σ_(n=2) ^∞  (1/(n+1))          =(1/2){((1/1)+(1/2)+(1/3)+...∞)−((1/1)+(1/2))}           =(1/2)(γ−(3/2))=(γ/2)−(3/4)  S_4 =(3/2)Σ_(n=2) ^∞  (1/(n−1))       (3/2)((1/1)+(1/2)+(1/3)+...)       =((3γ)/2)  so reauired ans is S_1 +S_2 +S_3 +S_4   =(−2γ+1)+(1−(π^2 /6))+((γ/2)−(3/4))+(((3γ)/2))  =−2γ+2γ+1+1−(3/4)−(π^2 /6)  =(5/4)−(π^2 /6)   pls check...
2n+1n2(n+1)(n1)=an+bn2+cn+1+dn12n+1=an(n+1)(n1)+b(n+1)(n1)+cn2(n1)+dn2(n+1)putn=01=b(1)b=1putn1=03=d×1×2d=32putn+1=02+1=c×(1)2×(2)1=2cc=122n+1=an(n+1)(n1)+b(n+1)(n1)+cn2(n1)+dn2(n+1)2n+1=a(n3n)+(1)(n21)+12n2(n1)+32n2(n+1)2n+1=n3(a+12+32)+n2(112+32)+n(a)+1a+2=0a=2=n=2(2n+1n2+12n+1+32n1)=S1+S2+S3+S4S1=2n=21nS1=2{(11+12+13+)11}=2(γ1)=2γ+1γ=EulersconstantS2=1n=21n2=1{(112+122+132+..)11}=(π261)=1π26S3=12n=21n+1=12{(11+12+13+)(11+12)}=12(γ32)=γ234S4=32n=21n132(11+12+13+)=3γ2soreauiredansisS1+S2+S3+S4=(2γ+1)+(1π26)+(γ234)+(3γ2)=2γ+2γ+1+134π26=54π26plscheck
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
Commented by ajfour last updated on 11/Oct/18
sir please explain me how  Σ_(n=1) ^∞  (1/n^2 ) = (π^2 /6) .
sirpleaseexplainmehown=11n2=π26.
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
proof taken from SL Loney Trigonometry
prooftakenfromSLLoneyTrigonometry

Leave a Reply

Your email address will not be published. Required fields are marked *