calculate-n-2-k-2-1-k-n-k- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 61804 by maxmathsup by imad last updated on 09/Jun/19 calculate∑n=2∞∑k=2∞1knk! Commented by maxmathsup by imad last updated on 15/Jun/19 S=∑k=2∞1k!∑n=2∞(1k)n=∑k=2∞wkk!wk=∑n=2∞(1k)n=∑n=0∞(1k)n−1−1k=11−1k−1−1k=kk−1−1−1k=k−1+1k−1−1−1k=1k−1−1k⇒S=∑k=2∞1k!(1k−1−1k)=∑k=2∞1(k−1)k!−∑k=2∞1kk!=∑k=1∞1k(k+1)!−∑k=2∞1kk!letfind∑k=2∞1kk!=∑k=1∞1kk!−1wehaveex=∑n=0∞xkk!⇒∫0xetdt=∑k=0∞[tk+1(k+1)k!]0x+c⇒ex−1=∑k=0∞xk+1(k+1)k!x=1⇒e−1=∑k=0∞1(k+1)k!∑k=1∞1k(k+1)!=∑k=1∞1k(k+1)k!=∑k=1∞(1k−1k+1)1k!=∑k=1∞1kk!−∑k=1∞1(k+1)k!⇒S=∑k=1∞1kk!−∑k=1∞1(k+1)k!−∑k=2∞1kk!=1−{∑k=0∞1(k+1)k!−1}=1−{e−1−1}=1−e+2=3−e⇒S=3−e. Answered by perlman last updated on 09/Jun/19 ∑n=2∞∑k=2∞1knk!=∑k=2+∞∑n=2+∞1knk!justify∀k,n⩾2∑n=2+∞∑k=2+∞1k!kn<∑ne2n=e∑n=2∞∑k=2∞1knk!=∑k=2+∞∑n=2+∞1knk!=∑k1k!∑n=21kn=∑k1k!.1k2.kk−1=∑k⩾21k!k(k−1)=∑kk−(k−1)k!k(k−1)=∑k1k!(k−1)−1k!k=∑kk−(k−1)k!(k−1)−∑k1kk!=∑k1(k−1)!(k−1)−∑k=2+∞1k!−Σ1k!k=∑k=2+∞1(k−1)!(k−1)−∑k=2+∞1k!k−∑k=0+∞1k!+∑k=011k!=1(2−1)!(2−1)−e+1+1=3−e Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-0-x-2-e-x-2-1-dx-Next Next post: Good-morning-please-what-book-do-you-recommended-for-calculus-and-physics-for-undergraduate- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.