Menu Close

calculate-n-2-k-2-1-k-n-k-




Question Number 61804 by maxmathsup by imad last updated on 09/Jun/19
calculate Σ_(n=2) ^∞  Σ_(k=2) ^∞    (1/(k^n   k!))
calculaten=2k=21knk!
Commented by maxmathsup by imad last updated on 15/Jun/19
S =Σ_(k=2) ^∞  (1/(k!)) Σ_(n=2) ^∞  ((1/k))^n  =Σ_(k=2) ^∞   (w_k /(k!))  w_k =Σ_(n=2) ^∞  ((1/k))^n  =Σ_(n=0) ^∞ ((1/k))^n  −1−(1/k) =(1/(1−(1/k))) −1−(1/k) =(k/(k−1)) −1−(1/k)  =((k−1 +1)/(k−1)) −1−(1/k) =(1/(k−1)) −(1/k) ⇒ S =Σ_(k=2) ^∞ (1/(k!))((1/(k−1)) −(1/k))  =Σ_(k=2) ^∞   (1/((k−1)k!)) −Σ_(k=2) ^∞   (1/(k k!))  =Σ_(k=1) ^∞    (1/(k(k+1)!)) −Σ_(k=2) ^∞  (1/(kk!))  let find  Σ_(k=2) ^∞  (1/(kk!)) =Σ_(k=1) ^∞  (1/(kk!)) −1  we have e^x  =Σ_(n=0) ^∞  (x^k /(k!)) ⇒ ∫_0 ^x  e^t dt = Σ_(k=0) ^∞ [ (t^(k+1) /((k+1)k!))]_0 ^x  +c  ⇒  e^x −1 =Σ_(k=0) ^∞  (x^(k+1) /((k+1)k!))  x=1 ⇒e−1 =Σ_(k=0) ^∞  (1/((k+1)k!))  Σ_(k=1) ^∞  (1/(k(k+1)!)) =Σ_(k=1) ^∞   (1/(k(k+1)k!)) =Σ_(k=1) ^∞ ((1/k)−(1/(k+1)))(1/(k!)) =Σ_(k=1) ^∞  (1/(kk!)) −Σ_(k=1) ^∞  (1/((k+1)k!))  ⇒ S =Σ_(k=1) ^∞  (1/(kk!)) −Σ_(k=1) ^∞  (1/((k+1)k!)) −Σ_(k=2) ^∞  (1/(kk!))  = 1−{ Σ_(k=0) ^∞  (1/((k+1)k!)) −1} =1−{e−1−1} =1−e+2 =3−e  ⇒  S =3−e .
S=k=21k!n=2(1k)n=k=2wkk!wk=n=2(1k)n=n=0(1k)n11k=111k11k=kk111k=k1+1k111k=1k11kS=k=21k!(1k11k)=k=21(k1)k!k=21kk!=k=11k(k+1)!k=21kk!letfindk=21kk!=k=11kk!1wehaveex=n=0xkk!0xetdt=k=0[tk+1(k+1)k!]0x+cex1=k=0xk+1(k+1)k!x=1e1=k=01(k+1)k!k=11k(k+1)!=k=11k(k+1)k!=k=1(1k1k+1)1k!=k=11kk!k=11(k+1)k!S=k=11kk!k=11(k+1)k!k=21kk!=1{k=01(k+1)k!1}=1{e11}=1e+2=3eS=3e.
Answered by perlman last updated on 09/Jun/19
Σ_(n=2) ^∞ Σ_(k=2) ^∞ (1/(k^n k!))=Σ_(k=2) ^(+∞) Σ_(n=2) ^(+∞) (1/(k^n k!))  justify  ∀k,n≥2  Σ_(n=2) ^(+∞) Σ_(k=2) ^(+∞) (1/(k!k^n ))<Σ_n (e/2^n )=e  Σ_(n=2) ^∞ Σ_(k=2) ^∞ (1/(k^n k!))=Σ_(k=2) ^(+∞) Σ_(n=2) ^(+∞) (1/(k^n k!))=Σ_k (1/(k!))Σ_(n=2) (1/k^n )  =Σ_k (1/(k!)).(1/k^2 ).(k/(k−1))=Σ_(k≥2) (1/(k!k(k−1)))=Σ_k ((k−(k−1))/(k!k(k−1)))=Σ_k (1/(k!(k−1)))−(1/(k!k))  =Σ_k ((k−(k−1))/(k!(k−1)))−Σ_k (1/(kk!))  =Σ_k (1/((k−1)!(k−1)))−Σ_(k=2) ^(+∞) (1/(k!))−Σ(1/(k!k))  =Σ_(k=2) ^(+∞) (1/((k−1)!(k−1)))−Σ_(k=2) ^(+∞) (1/(k!k))−Σ_(k=0) ^(+∞) (1/(k!))+Σ_(k=0) ^1 (1/(k!))  =(1/((2−1)!(2−1)))−e+1+1=3−e
n=2k=21knk!=k=2+n=2+1knk!justifyk,n2n=2+k=2+1k!kn<ne2n=en=2k=21knk!=k=2+n=2+1knk!=k1k!n=21kn=k1k!.1k2.kk1=k21k!k(k1)=kk(k1)k!k(k1)=k1k!(k1)1k!k=kk(k1)k!(k1)k1kk!=k1(k1)!(k1)k=2+1k!Σ1k!k=k=2+1(k1)!(k1)k=2+1k!kk=0+1k!+k=011k!=1(21)!(21)e+1+1=3e

Leave a Reply

Your email address will not be published. Required fields are marked *