Question Number 80813 by mathmax by abdo last updated on 06/Feb/20
$${calculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\xi\left({n}\right)−\mathrm{1}}{{n}}\:\:\:{with}\:\xi\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:\left({x}>\mathrm{1}\right) \\ $$
Answered by mind is power last updated on 06/Feb/20
$$=\underset{{n}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{n}}.\underset{{m}\geqslant\mathrm{2}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{m}^{{n}} } \\ $$$$=\underset{{m}\geqslant\mathrm{2}} {\sum}\underset{{n}\geqslant\mathrm{2}} {\sum}.\left(\frac{\mathrm{1}}{{m}}\right)^{{n}} .\frac{\mathrm{1}}{{n}} \\ $$$$=\underset{{m}\geqslant\mathrm{2}} {\sum}.\left(\underset{{n}\geqslant\mathrm{1}} {\sum}\left(\frac{\mathrm{1}}{{m}}\right)^{{n}} .\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{m}}\right) \\ $$$$=\underset{{m}\geqslant\mathrm{2}} {\sum}\left(−{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{{m}}\right)−\frac{\mathrm{1}}{{m}}\right) \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\underset{{m}=\mathrm{2}} {\overset{{x}} {\sum}}\left(−{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{{m}}\right)−\frac{\mathrm{1}}{{m}}\right) \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left\{{ln}\left({x}\right)−\underset{{m}=\mathrm{2}} {\overset{{x}} {\sum}}\frac{\mathrm{1}}{{m}}\right\}=\gamma+\mathrm{1} \\ $$
Commented by mathmax by abdo last updated on 06/Feb/20
$${thank}\:{you}\:{sir}. \\ $$