Menu Close

calculate-n-2-n-1-n-with-x-n-1-1-n-x-x-gt-1-




Question Number 82445 by mathmax by abdo last updated on 21/Feb/20
calculate Σ_(n=2) ^∞  ((ξ(n)−1)/n)  with ξ(x) =Σ_(n=1) ^∞  (1/n^x )   (x>1)
$${calculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\xi\left({n}\right)−\mathrm{1}}{{n}} \\ $$$${with}\:\xi\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:\left({x}>\mathrm{1}\right) \\ $$
Answered by mind is power last updated on 21/Feb/20
=Σ_(n≥2) (1/n).Σ_(m≥2) (1/m^n )=Σ_(m≥2) .Σ_(n≥2) (1/n).((1/m))^n =Σ_(m≥2) .[−ln(1−(1/m))−(1/m)]  =Σ_(m≥2) [−ln(m−1)+ln(m)−(1/m)]  =lim_(x→∞) .Σ_(m=2) ^x −ln(m−1)+ln(m)−(1/m)]  =lim_(x→∞)  ln(x)−Σ_(m=2) ^x (1/m)  =−lim_(x→∞) {Σ_(m=2) ^x (1/m)−ln(x)}  =−lim_(x→∞) {Σ_(m=1) ^x (1/m)−ln(x)−1}=−{γ−1}=1−γ   γ Euler mechorini constent
$$=\underset{{n}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{n}}.\underset{{m}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{m}^{{n}} }=\underset{{m}\geqslant\mathrm{2}} {\sum}.\underset{{n}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{n}}.\left(\frac{\mathrm{1}}{{m}}\right)^{{n}} =\underset{{m}\geqslant\mathrm{2}} {\sum}.\left[−{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{{m}}\right)−\frac{\mathrm{1}}{{m}}\right] \\ $$$$=\underset{{m}\geqslant\mathrm{2}} {\sum}\left[−{ln}\left({m}−\mathrm{1}\right)+{ln}\left({m}\right)−\frac{\mathrm{1}}{{m}}\right] \\ $$$$\left.=\underset{{x}\rightarrow\infty} {\mathrm{lim}}.\underset{{m}=\mathrm{2}} {\overset{{x}} {\sum}}−{ln}\left({m}−\mathrm{1}\right)+{ln}\left({m}\right)−\frac{\mathrm{1}}{{m}}\right] \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{ln}\left({x}\right)−\underset{{m}=\mathrm{2}} {\overset{{x}} {\sum}}\frac{\mathrm{1}}{{m}} \\ $$$$=−\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left\{\underset{{m}=\mathrm{2}} {\overset{{x}} {\sum}}\frac{\mathrm{1}}{{m}}−{ln}\left({x}\right)\right\} \\ $$$$=−\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left\{\underset{{m}=\mathrm{1}} {\overset{{x}} {\sum}}\frac{\mathrm{1}}{{m}}−{ln}\left({x}\right)−\mathrm{1}\right\}=−\left\{\gamma−\mathrm{1}\right\}=\mathrm{1}−\gamma\: \\ $$$$\gamma\:{Euler}\:{mechorini}\:{constent} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *