Menu Close

calculate-n-2-n-3-1-n-3-1-




Question Number 99920 by abdomathmax last updated on 24/Jun/20
calculate Π_(n=2) ^∞ ((n^3 −1)/(n^3 +1))
calculaten=2n31n3+1
Answered by maths mind last updated on 24/Jun/20
=Π_(n=2) ^(+∞) (((n−1)(n^2 +n+1))/((n+1)(n^2 −n+1)))  S=Π_(n=2) ^m (((n−1)(n^2 +n+1))/((n+1)(n^2 −n+1)))=(2/(m(m+1))).Π_(n=2) ^m (((n^2 +n+1))/((n^2 −n+1)))..E  n^2 −n+_(n=t+1) 1=(t+1)^2 −(t+1)+1=t^2 +t+1  E⇔((Π_(n=2) ^m (n^2 +n+1))/(Π_(t=1) ^(m−1) (t^2 +t+1)))=((m^2 +m+1)/3)  S=((2(m^2 +m+1))/(3(m^2 +m)))  S→(2/3)
=+n=2(n1)(n2+n+1)(n+1)(n2n+1)S=mn=2(n1)(n2+n+1)(n+1)(n2n+1)=2m(m+1).mn=2(n2+n+1)(n2n+1)..En2n+n=t+11=(t+1)2(t+1)+1=t2+t+1Emn=2(n2+n+1)m1t=1(t2+t+1)=m2+m+13S=2(m2+m+1)3(m2+m)S23
Commented by mathmax by abdo last updated on 24/Jun/20
thank you sir.
thankyousir.
Answered by Smail last updated on 24/Jun/20
A=Π_(n=2) ^∞ (((n−1)(n^2 +n+1))/((n+1)(n^2 −n+1)))  =Π_(n=2) ^∞ ((n−1)/(n^2 −n+1))Π_(n=2) ^∞ (1/(n+1))Π_(n=2) ^∞ (n^2 +n+1)  Π_(n=2) ^∞ (1/(n+1))=Π_(n=4) ^∞ (1/(n−1))=2Π_(n=2) ^∞ (1/(n−1))  And  n^2 +n+1=m^2 −m+1  ⇒m^2 −m=n^2 +n  ⇒(m−(1/2))^2 =(n+(1/2))^2 ⇒m=n+1  So, Π_(n=2) ^∞ (n^2 +n+1)=Π_(m=3) ^∞ (m^2 −m+1)  =Π_(n=2) ^∞ (n^2 −n+1)×(1/3)  A=Π_(n=2) ^∞ ((n−1)/(n^2 −n+1))∙2Π_(n=2) ^∞ (1/(n−1))∙(1/3)Π_(n=2) ^∞ (n^2 −n+1)  =(2/3)Π_(n=2) ^∞ (((n−1)(n^2 −n+1))/((n−1)(n^2 −n+1)))=(2/3)  Π_(n=2) ^∞ ((n^3 −1)/(n^3 +1))=(2/3)
A=n=2(n1)(n2+n+1)(n+1)(n2n+1)=n=2n1n2n+1n=21n+1n=2(n2+n+1)n=21n+1=n=41n1=2n=21n1Andn2+n+1=m2m+1m2m=n2+n(m12)2=(n+12)2m=n+1So,n=2(n2+n+1)=m=3(m2m+1)=n=2(n2n+1)×13A=n=2n1n2n+12n=21n113n=2(n2n+1)=23n=2(n1)(n2n+1)(n1)(n2n+1)=23n=2n31n3+1=23
Answered by mathmax by abdo last updated on 25/Jun/20
let A_n =Π_(k=2) ^n  ((k^3 −1)/(k^3  +1)) ⇒ A_n =Π_(k=2) ^n  ((k−1)/(k+1)) Π_(k=2) ^n  ((k^2 +k+1)/(k^2 −k+1))  we have Π_(k=2) ^n  ((k−1)/(k+1)) =(1/3)×(2/4)×(3/5)×....((n−1)/(n+1)) =((2(n−1)!)/((n+1)!)) =(2/(n(n+1)))  ⇒ln(A_n ) =ln2−ln(n^2 +n)+Σ_(k=2) ^n  {ln(k^2  +k+1)−ln(k^2 −k+1)}  =ln(2)−ln(n^2 +n)+Σ_(k=2) ^n  { x_k −x_(k−1) }  with x_k =ln(k^2  +k+1)  =ln2−ln(n^2 +n) +x_2 −x_1 +x_3 −x_2  +....+x_n −x_(n−1)  =ln2−ln(n^2 +n)+x_n −x_1   =ln(2)−ln(n^2  +n)+ln(n^2  +n+1)−ln(3) =ln((2/3))+ln(((n^2  +n+1)/(n^2  +n))) ⇒  lim_(n→+∞) ln(A_n ) =ln((2/3)) ⇒lim_(n→+∞) A_n =(2/3)
letAn=k=2nk31k3+1An=k=2nk1k+1k=2nk2+k+1k2k+1wehavek=2nk1k+1=13×24×35×.n1n+1=2(n1)!(n+1)!=2n(n+1)ln(An)=ln2ln(n2+n)+k=2n{ln(k2+k+1)ln(k2k+1)}=ln(2)ln(n2+n)+k=2n{xkxk1}withxk=ln(k2+k+1)=ln2ln(n2+n)+x2x1+x3x2+.+xnxn1=ln2ln(n2+n)+xnx1=ln(2)ln(n2+n)+ln(n2+n+1)ln(3)=ln(23)+ln(n2+n+1n2+n)limn+ln(An)=ln(23)limn+An=23

Leave a Reply

Your email address will not be published. Required fields are marked *