Menu Close

calculate-n-p-C-n-p-x-n-




Question Number 28620 by abdo imad last updated on 28/Jan/18
calculate  Σ_(n=p) ^(+∞)    C_(n ) ^p x^n .
$${calculate}\:\:\sum_{{n}={p}} ^{+\infty} \:\:\:{C}_{{n}\:} ^{{p}} {x}^{{n}} . \\ $$
Commented by Tinkutara last updated on 28/Jan/18
How can n>p becasuce it is used in  ^p C_n ?
$${How}\:{can}\:{n}>{p}\:{becasuce}\:{it}\:{is}\:{used}\:{in} \\ $$$$\:^{{p}} {C}_{{n}} ? \\ $$
Commented by abdo imad last updated on 28/Jan/18
Σ_(n=p) ^∝  C_n ^p  x^n =  C_p ^p   x^p   + C_(p+1) ^p  x^(p+1)  +...
$$\sum_{{n}={p}} ^{\propto} \:{C}_{{n}} ^{{p}} \:{x}^{{n}} =\:\:{C}_{{p}} ^{{p}} \:\:{x}^{{p}} \:\:+\:{C}_{{p}+\mathrm{1}} ^{{p}} \:{x}^{{p}+\mathrm{1}} \:+… \\ $$
Commented by Tinkutara last updated on 28/Jan/18
But what is^p C_(p+1) ? Is it combination?  Because if we write^n C_r  it means  r≤n.
$${But}\:{what}\:{is}\:^{{p}} {C}_{{p}+\mathrm{1}} ?\:{Is}\:{it}\:{combination}? \\ $$$${Because}\:{if}\:{we}\:{write}\:^{{n}} {C}_{{r}} \:{it}\:{means} \\ $$$${r}\leqslant{n}. \\ $$
Commented by abdo imad last updated on 28/Jan/18
for us we use  C_n ^p  = ((n!)/(p!(n−p)!)) for p≤n  it s only a notation  of combination..
$${for}\:{us}\:{we}\:{use}\:\:{C}_{{n}} ^{{p}} \:=\:\frac{{n}!}{{p}!\left({n}−{p}\right)!}\:{for}\:{p}\leqslant{n}\:\:{it}\:{s}\:{only}\:{a}\:{notation} \\ $$$${of}\:{combination}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *