Menu Close

calculate-P-1-e-pi-2-cos-lnx-x-dx-




Question Number 168429 by mathocean1 last updated on 10/Apr/22
calculate:  P=∫_1 ^e^(π/2)  ((cos(lnx))/x)dx
$${calculate}: \\ $$$${P}=\int_{\mathrm{1}} ^{{e}^{\frac{\pi}{\mathrm{2}}} } \frac{{cos}\left({lnx}\right)}{{x}}{dx} \\ $$
Answered by qaz last updated on 10/Apr/22
∫_1 ^e^(π/2)  ((cos (lnx))/x)dx=ℜ∫_1 ^e^(π/2)  x^(i−1) dx=ℜ(x^i /i)∣_1 ^e^(π/2)  =ℜ((e^((π/2)i) /i)−(1/i))=1
$$\int_{\mathrm{1}} ^{\mathrm{e}^{\pi/\mathrm{2}} } \frac{\mathrm{cos}\:\left(\mathrm{lnx}\right)}{\mathrm{x}}\mathrm{dx}=\Re\int_{\mathrm{1}} ^{\mathrm{e}^{\pi/\mathrm{2}} } \mathrm{x}^{\mathrm{i}−\mathrm{1}} \mathrm{dx}=\Re\frac{\mathrm{x}^{\mathrm{i}} }{\mathrm{i}}\mid_{\mathrm{1}} ^{\mathrm{e}^{\pi/\mathrm{2}} } =\Re\left(\frac{\mathrm{e}^{\frac{\pi}{\mathrm{2}}\mathrm{i}} }{\mathrm{i}}−\frac{\mathrm{1}}{\mathrm{i}}\right)=\mathrm{1} \\ $$
Answered by FelipeLz last updated on 10/Apr/22
ln(x) = u → (1/x)dx = du  P = ∫_1 ^e^(π/2)  ((cos(ln (x)))/x)dx = ∫_0 ^(π/2) cos(u)du = sin(u)∣_0 ^(π/2)  = 1
$$\mathrm{ln}\left({x}\right)\:=\:{u}\:\rightarrow\:\frac{\mathrm{1}}{{x}}{dx}\:=\:{du} \\ $$$${P}\:=\:\int_{\mathrm{1}} ^{{e}^{\frac{\pi}{\mathrm{2}}} } \frac{\mathrm{cos}\left(\mathrm{ln}\:\left({x}\right)\right)}{{x}}{dx}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}\left({u}\right){du}\:=\:\mathrm{sin}\left({u}\right)\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\:\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *