Menu Close

calculate-P-1-e-pi-2-cos-lnx-x-dx-




Question Number 168429 by mathocean1 last updated on 10/Apr/22
calculate:  P=∫_1 ^e^(π/2)  ((cos(lnx))/x)dx
calculate:P=1eπ2cos(lnx)xdx
Answered by qaz last updated on 10/Apr/22
∫_1 ^e^(π/2)  ((cos (lnx))/x)dx=ℜ∫_1 ^e^(π/2)  x^(i−1) dx=ℜ(x^i /i)∣_1 ^e^(π/2)  =ℜ((e^((π/2)i) /i)−(1/i))=1
1eπ/2cos(lnx)xdx=1eπ/2xi1dx=xii1eπ/2=(eπ2ii1i)=1
Answered by FelipeLz last updated on 10/Apr/22
ln(x) = u → (1/x)dx = du  P = ∫_1 ^e^(π/2)  ((cos(ln (x)))/x)dx = ∫_0 ^(π/2) cos(u)du = sin(u)∣_0 ^(π/2)  = 1
ln(x)=u1xdx=duP=1eπ2cos(ln(x))xdx=0π2cos(u)du=sin(u)0π2=1

Leave a Reply

Your email address will not be published. Required fields are marked *