Menu Close

calculate-pi-4-pi-3-dx-cosx-sinx-




Question Number 46841 by maxmathsup by imad last updated on 01/Nov/18
calculate ∫_(π/4) ^(π/3)    (dx/(cosx sinx))
calculateπ4π3dxcosxsinx
Commented by maxmathsup by imad last updated on 01/Nov/18
we have I = ∫_(π/4) ^(π/3)    (dx/(cosxsinx)) =2  ∫_(π/4) ^(π/3)   (dx/(sin(2x))) =_(2x=t)    2 ∫_(π/2) ^((2π)/3)    (1/(sin(t))) (dt/2)  =∫_(π/2) ^((2π)/3)  (dt/(sint)) =_(tan((t/2))=u)     ∫_(tan((π/4))) ^(tan((π/3)))      (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 )) = ∫_1 ^(√3)    (du/u) =[ln∣u∣]_1 ^(√3)   =ln((√3)) =((ln(3))/2) .
wehaveI=π4π3dxcosxsinx=2π4π3dxsin(2x)=2x=t2π22π31sin(t)dt2=π22π3dtsint=tan(t2)=utan(π4)tan(π3)12u1+u22du1+u2=13duu=[lnu]13=ln(3)=ln(3)2.
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18
∫_(π/4) ^(π/3) (dx/(cos^2 x×tanx))  ∫_(π/4) ^(π/3)  ((d(tanx))/(tanx))  ∣ln(tanx)∣_(π/4) ^(π/3)   =ln((√3) )−ln(1)  =(1/2)ln3
π4π3dxcos2x×tanxπ4π3d(tanx)tanxln(tanx)π4π3=ln(3)ln(1)=12ln3

Leave a Reply

Your email address will not be published. Required fields are marked *