calculate-pi-4-pi-3-dx-cosx-sinx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 46841 by maxmathsup by imad last updated on 01/Nov/18 calculate∫π4π3dxcosxsinx Commented by maxmathsup by imad last updated on 01/Nov/18 wehaveI=∫π4π3dxcosxsinx=2∫π4π3dxsin(2x)=2x=t2∫π22π31sin(t)dt2=∫π22π3dtsint=tan(t2)=u∫tan(π4)tan(π3)12u1+u22du1+u2=∫13duu=[ln∣u∣]13=ln(3)=ln(3)2. Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18 ∫π4π3dxcos2x×tanx∫π4π3d(tanx)tanx∣ln(tanx)∣π4π3=ln(3)−ln(1)=12ln3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-2sin26-2cos64-4sin13-cos13-2-1-sec15-sin15-cos30-Next Next post: let-f-x-0-x-t-sin-t-dt-1-find-a-explicit-form-of-f-x-2-calculate-0-pi-2-t-sint-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.