calculate-pi-4-pi-3-sinx-cosx-tanx-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42679 by maxmathsup by imad last updated on 31/Aug/18 calculate∫π4π3sinxcosx+tanxdx. Commented by Meritguide1234 last updated on 03/Sep/18 Commented by maxmathsup by imad last updated on 03/Sep/18 letA=∫π4π3sinxcosx+tanxdx⇒A=∫π4π3sinxcosxcos2x+sinxdx=∫π4π3sinxcosxdx1−sin2x+sinx=sinx=t∫1232tdt1−t2+t=−∫1232tt2−t−1dt=−12∫12322t−1−1t2−t−1dt=−12[ln∣t2−t−1∣]1232+12∫1232dtt2−t−1=−12{ln∣34−32−1∣−ln∣12−12−1∣+12∫1232dtt2−t−1but∫1232dtt2−t−1dt=∫1232dt(t−12)2−34=t−12=32u∫23(12−12)23(3−12)134(u2−1)32du=4332∫13(2−1)3−13duu2−1=13∫2−133−13(1u−1−1u+1)du=13[ln∣u−1u+1∣]2−133−13=13{ln∣3−13−13−13+1∣−ln∣2−13−12−13+1∣}=13{ln∣123−1∣−ln∣2−1−32−1+3∣⇒I=−12ln(14+32)−ln(12+12)+13{ln∣123−1∣−ln∣2−1−32−1+3∣. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-42673Next Next post: calculale-A-n-cos-x-n-1-x-2-dx-with-n-integr-natural- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.