Menu Close

calculate-pi-4-pi-4-cosx-e-1-x-1-dx-




Question Number 61662 by maxmathsup by imad last updated on 06/Jun/19
calculate ∫_(−(π/4)) ^(π/4)   ((cosx)/(e^(1/x)  +1)) dx
calculateπ4π4cosxe1x+1dx
Commented by maxmathsup by imad last updated on 07/Jun/19
let f(x) =((cosx)/(e^(1/x)  +1))  we have the decomposition f(x)=((f(x)+f(−x))/2)(even) +((f(x)−f(−x))/2) (odd)  ⇒ I =∫_(−(π/4)) ^(π/4)   ((f(x)+f(−x))/2)dx + ∫_(−(π/4)) ^(π/4)  ((f(x)−f(−x))/2)dx =H +K  K =0 ⇒ I = ∫_0 ^(π/4) {((cos(x))/(e^(1/x) +1)) +((cosx)/(e^(−(1/x))  +1))}dx=∫_0 ^(π/4)  {((e^(−(1/x))  +1 +e^(1/x)  +1)/(1 +e^(1/x)  +e^(−(1/x))  +1))}cosxdx  = ∫_0 ^(π/4)  cos(x)dx =[sinx]_0 ^(π/4)  =((√2)/2)  ⇒  I =((√2)/2) .
letf(x)=cosxe1x+1wehavethedecompositionf(x)=f(x)+f(x)2(even)+f(x)f(x)2(odd)I=π4π4f(x)+f(x)2dx+π4π4f(x)f(x)2dx=H+KK=0I=0π4{cos(x)e1x+1+cosxe1x+1}dx=0π4{e1x+1+e1x+11+e1x+e1x+1}cosxdx=0π4cos(x)dx=[sinx]0π4=22I=22.

Leave a Reply

Your email address will not be published. Required fields are marked *