calculate-pi-4-pi-4-cosx-e-1-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 61662 by maxmathsup by imad last updated on 06/Jun/19 calculate∫−π4π4cosxe1x+1dx Commented by maxmathsup by imad last updated on 07/Jun/19 letf(x)=cosxe1x+1wehavethedecompositionf(x)=f(x)+f(−x)2(even)+f(x)−f(−x)2(odd)⇒I=∫−π4π4f(x)+f(−x)2dx+∫−π4π4f(x)−f(−x)2dx=H+KK=0⇒I=∫0π4{cos(x)e1x+1+cosxe−1x+1}dx=∫0π4{e−1x+1+e1x+11+e1x+e−1x+1}cosxdx=∫0π4cos(x)dx=[sinx]0π4=22⇒I=22. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-127196Next Next post: Should-auld-acquaintance-be-forgot-and-never-brought-to-mine-Should-auld-aquaintance-be-forgot-and-days-of-auld-lang-syne-For-auld-lang-syne-my-dear-for-auld-lang-syne-we-ll-take-a-cup-o-kindn Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.