Question Number 61662 by maxmathsup by imad last updated on 06/Jun/19
$${calculate}\:\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{cosx}}{{e}^{\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}}\:{dx}\: \\ $$
Commented by maxmathsup by imad last updated on 07/Jun/19
$${let}\:{f}\left({x}\right)\:=\frac{{cosx}}{{e}^{\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}}\:\:{we}\:{have}\:{the}\:{decomposition}\:{f}\left({x}\right)=\frac{{f}\left({x}\right)+{f}\left(−{x}\right)}{\mathrm{2}}\left({even}\right)\:+\frac{{f}\left({x}\right)−{f}\left(−{x}\right)}{\mathrm{2}}\:\left({odd}\right) \\ $$$$\Rightarrow\:{I}\:=\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{f}\left({x}\right)+{f}\left(−{x}\right)}{\mathrm{2}}{dx}\:+\:\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{f}\left({x}\right)−{f}\left(−{x}\right)}{\mathrm{2}}{dx}\:={H}\:+{K} \\ $$$${K}\:=\mathrm{0}\:\Rightarrow\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left\{\frac{{cos}\left({x}\right)}{{e}^{\frac{\mathrm{1}}{{x}}} +\mathrm{1}}\:+\frac{{cosx}}{{e}^{−\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}}\right\}{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\left\{\frac{{e}^{−\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}\:+{e}^{\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}}{\mathrm{1}\:+{e}^{\frac{\mathrm{1}}{{x}}} \:+{e}^{−\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}}\right\}{cosxdx} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}\left({x}\right){dx}\:=\left[{sinx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\:\Rightarrow\:\:{I}\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:. \\ $$