Menu Close

calculate-pi-4-pi-4-cosx-e-1-x-1-dx-




Question Number 61662 by maxmathsup by imad last updated on 06/Jun/19
calculate ∫_(−(π/4)) ^(π/4)   ((cosx)/(e^(1/x)  +1)) dx
$${calculate}\:\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{cosx}}{{e}^{\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}}\:{dx}\: \\ $$
Commented by maxmathsup by imad last updated on 07/Jun/19
let f(x) =((cosx)/(e^(1/x)  +1))  we have the decomposition f(x)=((f(x)+f(−x))/2)(even) +((f(x)−f(−x))/2) (odd)  ⇒ I =∫_(−(π/4)) ^(π/4)   ((f(x)+f(−x))/2)dx + ∫_(−(π/4)) ^(π/4)  ((f(x)−f(−x))/2)dx =H +K  K =0 ⇒ I = ∫_0 ^(π/4) {((cos(x))/(e^(1/x) +1)) +((cosx)/(e^(−(1/x))  +1))}dx=∫_0 ^(π/4)  {((e^(−(1/x))  +1 +e^(1/x)  +1)/(1 +e^(1/x)  +e^(−(1/x))  +1))}cosxdx  = ∫_0 ^(π/4)  cos(x)dx =[sinx]_0 ^(π/4)  =((√2)/2)  ⇒  I =((√2)/2) .
$${let}\:{f}\left({x}\right)\:=\frac{{cosx}}{{e}^{\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}}\:\:{we}\:{have}\:{the}\:{decomposition}\:{f}\left({x}\right)=\frac{{f}\left({x}\right)+{f}\left(−{x}\right)}{\mathrm{2}}\left({even}\right)\:+\frac{{f}\left({x}\right)−{f}\left(−{x}\right)}{\mathrm{2}}\:\left({odd}\right) \\ $$$$\Rightarrow\:{I}\:=\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{f}\left({x}\right)+{f}\left(−{x}\right)}{\mathrm{2}}{dx}\:+\:\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{f}\left({x}\right)−{f}\left(−{x}\right)}{\mathrm{2}}{dx}\:={H}\:+{K} \\ $$$${K}\:=\mathrm{0}\:\Rightarrow\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left\{\frac{{cos}\left({x}\right)}{{e}^{\frac{\mathrm{1}}{{x}}} +\mathrm{1}}\:+\frac{{cosx}}{{e}^{−\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}}\right\}{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\left\{\frac{{e}^{−\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}\:+{e}^{\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}}{\mathrm{1}\:+{e}^{\frac{\mathrm{1}}{{x}}} \:+{e}^{−\frac{\mathrm{1}}{{x}}} \:+\mathrm{1}}\right\}{cosxdx} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}\left({x}\right){dx}\:=\left[{sinx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\:\Rightarrow\:\:{I}\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *