Menu Close

calculate-pi-4-pi-4-x-2-cos-2-x-dx-




Question Number 41049 by prof Abdo imad last updated on 01/Aug/18
calculate   ∫_(−(π/4)) ^(π/4)   (x^2 /(cos^2 x))dx
calculateπ4π4x2cos2xdx
Commented by maxmathsup by imad last updated on 02/Aug/18
let  I   = ∫_(−(π/4)) ^(π/4)   (x^2 /(cos^2 x))dx ⇒ I  =∫_(−(π/4)) ^(π/4)   (1+tan^2 x)x^2 dx changement tanx =t  give I = ∫_(−1) ^1   (1+t^2 )(arctant)^2 (dt/(1+t^2 )) = 2∫_0 ^1  (arctant)^2 dt by parts  I = 2{ [t (arctant)^2 ]_0 ^1  −∫_0 ^1  t ((2arctan(t))/(1+t^2 ))dt}  =2{(π^2 /(16)) − ∫_0 ^1    ((2t arctan(t))/(1+t^2 ))} =(π^2 /8) −4 ∫_0 ^1 ((t arctan(t))/(1+t^2 )) dt  let ϕ(x) =∫_0 ^1   ((t arctan(xt))/(1+t^2 )) dt ⇒ϕ^′ (x) = ∫_0 ^1  (t^2 /((1+x^2 t^2 )(1+t^2 )))dt   ϕ^′ (x)  =_(xt =u)      ∫_0 ^x        (u^2 /(x^2 (1+u^2 )(1+(u^2 /x^2 )))) (du/x)  = ∫_0 ^x       (u^2 /(x(1+u^2 )(x^2  +u^2 )))du =(1/x) ∫_0 ^1    (u^2 /((u^2  +1)( u^2  +x^2 )))du let decompose  F(u) = (u^2 /((u^2  +1)(u^2  +x^2 ))) ⇒F(u) = ((au+b)/(u^2  +1)) +((cu +d)/(u^2  +x^2 ))  F(−u) =F(u) ⇒((−au +b)/(u^2  +1)) +((−cu +d)/(u^2  +x^2 )) =F(u) ⇒a=c=0 ⇒  F(u) = (b/(u^2  +1)) +(d/(u^2  +x^2 ))  lim_(u→+∞) u^2 F(u) =1 =b+d ⇒d=1−b ⇒  F(u) =(b/(u^2 +1)) +((1−b)/(u^2  +x^2 )) ⇒F(0) =0 =b +((1−b)/x^2 ) =(1/x^2 ) +(1−(1/x^2 ))b ⇒   −(1/x^2 ) =(((x^2 −1)b)/x^2 ) ⇒b =(1/(1−x^2 )) ⇒F(u) =(1/((1−x^2 )(u^2  +1))) +((1−(1/(1−x^2 )))/(u^2  +x^2 ))  = (1/((1−x^2 )(u^2  +1))) −(x^2 /((1−x^2 )(u^2  +x^2 ))) ⇒F(u) =(1/(1−x^2 )){(1/(u^2  +1)) −(x^2 /(u^2  +x^2 ))}  ϕ^′ (x) =(1/x)∫_0 ^x  F(u)du =(1/(x(1−x^2 ))){ ∫_0 ^x   (du/(1+u^2 )) −x^2  ∫_0 ^x    (du/(u^2  +x^2 ))}  =((arctanx)/(x(1−x^2 ))) −(x/(1−x^2 )) ∫_0 ^x    (du/(u^2 +x^2 )) but  ∫_0 ^x   (du/(u^2  +x^2 )) du =_(u=xt)   ∫_0 ^1      ((xdt)/(x^2 t^2  +x^2 )) =(1/x) ∫_0 ^1    (dt/(t^2  +1)) =(π/(4x)) ⇒  ϕ^′ (x) = ((arctan(x))/(x(1−x^2 ))) −(π/(4(1−x^2 ))) ( for x^2  ≠1) ⇒
letI=π4π4x2cos2xdxI=π4π4(1+tan2x)x2dxchangementtanx=tgiveI=11(1+t2)(arctant)2dt1+t2=201(arctant)2dtbypartsI=2{[t(arctant)2]0101t2arctan(t)1+t2dt}=2{π216012tarctan(t)1+t2}=π28401tarctan(t)1+t2dtletφ(x)=01tarctan(xt)1+t2dtφ(x)=01t2(1+x2t2)(1+t2)dtφ(x)=xt=u0xu2x2(1+u2)(1+u2x2)dux=0xu2x(1+u2)(x2+u2)du=1x01u2(u2+1)(u2+x2)duletdecomposeF(u)=u2(u2+1)(u2+x2)F(u)=au+bu2+1+cu+du2+x2F(u)=F(u)au+bu2+1+cu+du2+x2=F(u)a=c=0F(u)=bu2+1+du2+x2limu+u2F(u)=1=b+dd=1bF(u)=bu2+1+1bu2+x2F(0)=0=b+1bx2=1x2+(11x2)b1x2=(x21)bx2b=11x2F(u)=1(1x2)(u2+1)+111x2u2+x2=1(1x2)(u2+1)x2(1x2)(u2+x2)F(u)=11x2{1u2+1x2u2+x2}φ(x)=1x0xF(u)du=1x(1x2){0xdu1+u2x20xduu2+x2}=arctanxx(1x2)x1x20xduu2+x2but0xduu2+x2du=u=xt01xdtx2t2+x2=1x01dtt2+1=π4xφ(x)=arctan(x)x(1x2)π4(1x2)(forx21)
Commented by maxmathsup by imad last updated on 02/Aug/18
ϕ(x) = ∫_. ^x   ((arctant)/(t(1−t^2 )))dt −(π/4) ∫_. ^x    (dt/(1−t^2 )) +c  but  ∫     (dt/(1−t^2 )) =(1/2)∫ ((1/(1+t)) +(1/(1−t)))dt =(1/2)ln∣((1+t)/(1−t))∣ ⇒  ϕ(x) = ∫_. ^x     ((arctan(t))/(t(1−t^2 )))dt−(π/8)ln∣((1+x)/(1−x))∣ +c  ....be continued ....
φ(x)=.xarctantt(1t2)dtπ4.xdt1t2+cbutdt1t2=12(11+t+11t)dt=12ln1+t1tφ(x)=.xarctan(t)t(1t2)dtπ8ln1+x1x+c.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *