calculate-pi-4-pi-4-x-2-cos-2-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 41049 by prof Abdo imad last updated on 01/Aug/18 calculate∫−π4π4x2cos2xdx Commented by maxmathsup by imad last updated on 02/Aug/18 letI=∫−π4π4x2cos2xdx⇒I=∫−π4π4(1+tan2x)x2dxchangementtanx=tgiveI=∫−11(1+t2)(arctant)2dt1+t2=2∫01(arctant)2dtbypartsI=2{[t(arctant)2]01−∫01t2arctan(t)1+t2dt}=2{π216−∫012tarctan(t)1+t2}=π28−4∫01tarctan(t)1+t2dtletφ(x)=∫01tarctan(xt)1+t2dt⇒φ′(x)=∫01t2(1+x2t2)(1+t2)dtφ′(x)=xt=u∫0xu2x2(1+u2)(1+u2x2)dux=∫0xu2x(1+u2)(x2+u2)du=1x∫01u2(u2+1)(u2+x2)duletdecomposeF(u)=u2(u2+1)(u2+x2)⇒F(u)=au+bu2+1+cu+du2+x2F(−u)=F(u)⇒−au+bu2+1+−cu+du2+x2=F(u)⇒a=c=0⇒F(u)=bu2+1+du2+x2limu→+∞u2F(u)=1=b+d⇒d=1−b⇒F(u)=bu2+1+1−bu2+x2⇒F(0)=0=b+1−bx2=1x2+(1−1x2)b⇒−1x2=(x2−1)bx2⇒b=11−x2⇒F(u)=1(1−x2)(u2+1)+1−11−x2u2+x2=1(1−x2)(u2+1)−x2(1−x2)(u2+x2)⇒F(u)=11−x2{1u2+1−x2u2+x2}φ′(x)=1x∫0xF(u)du=1x(1−x2){∫0xdu1+u2−x2∫0xduu2+x2}=arctanxx(1−x2)−x1−x2∫0xduu2+x2but∫0xduu2+x2du=u=xt∫01xdtx2t2+x2=1x∫01dtt2+1=π4x⇒φ′(x)=arctan(x)x(1−x2)−π4(1−x2)(forx2≠1)⇒ Commented by maxmathsup by imad last updated on 02/Aug/18 φ(x)=∫.xarctantt(1−t2)dt−π4∫.xdt1−t2+cbut∫dt1−t2=12∫(11+t+11−t)dt=12ln∣1+t1−t∣⇒φ(x)=∫.xarctan(t)t(1−t2)dt−π8ln∣1+x1−x∣+c….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-41044Next Next post: find-the-value-of-n-1-2n-3-n-2-n-1-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.