Menu Close

calculate-pi-6-pi-6-1-tan-x-1-sin-2x-dx-




Question Number 40142 by maxmathsup by imad last updated on 16/Jul/18
calculate    ∫_(−(π/6)) ^(π/6)    ((1+tan(x))/(1+sin(2x)))dx
calculateπ6π61+tan(x)1+sin(2x)dx
Commented by maxmathsup by imad last updated on 19/Jul/18
let  I = ∫_(−(π/6)) ^(π/6)   ((1+tan(x))/(1+sin(2x)))dx changement tanx =t give  I = ∫_(−(1/( (√3)))) ^(1/( (√3)))    ((1+t)/(1+((2t)/(1+t^2 )))) (dt/(1+t^2 )) = ∫_(−(1/( (√3)))) ^(1/( (√3)))    ((1+t)/(1+t^2  +2t)) dt  = ∫_(−(1/( (√3)))) ^(1/( (√3)))    ((t+1)/((t+1)^2 ))dt = ∫_(−(1/( (√3)))) ^(1/( (√3)))     (dt/(t+1)) =[ln∣t+1∣]_(−(1/( (√3)))) ^(1/( (√3)))   =ln(1+(1/( (√3))))−ln(1−(1/( (√3))))=ln((√3)+1)−ln((√3)) −ln((√3)−1) +ln((√3))  I=ln((√3) +1) −ln((√3)−1)
letI=π6π61+tan(x)1+sin(2x)dxchangementtanx=tgiveI=13131+t1+2t1+t2dt1+t2=13131+t1+t2+2tdt=1313t+1(t+1)2dt=1313dtt+1=[lnt+1]1313=ln(1+13)ln(113)=ln(3+1)ln(3)ln(31)+ln(3)I=ln(3+1)ln(31)
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18
t=tanx   dt=sec^2 x dx  ∫_(−(1/( (√3)))) ^(1/( (√3) ))  (((1+t)(1+t^2 )(1+t^2 )dt)/(1+t^2 +2t))  ∫_(−(1/( (√3)))) ^(1/( (√3)))  ((t^4 +2t^2 +1)/(t+1))dt  ∫_((−1)/( (√3))) ^(1/( (√3) )) ((t^4 +t^3 −t^3 −t^2 +3t^2 +3t−3t−3+4)/(t+1))  ∫_((−1)/( (√3))) ^(1/( (√3) ))  t^3 −t^2 +3t−3+(4/(t+1)) dt  =∣(t^4 /4)−(t^3 /3)+3(t^2 /2)−3t+4ln(t+1)∣_((−1)/( (√3))) ^(1/( (√3)))   =−(1/3)((2/(3(√3))))−3((2/( (√3))))+4ln((((1/( (√3)))+1)/(((−1)/( (√3)))+1)))  =((−2)/(9(√3)))−(6/( (√3)))+4ln((((√3) +1)/( (√3) −1)))      0
t=tanxdt=sec2xdx1313(1+t)(1+t2)(1+t2)dt1+t2+2t1313t4+2t2+1t+1dt1313t4+t3t3t2+3t2+3t3t3+4t+11313t3t2+3t3+4t+1dt=∣t44t33+3t223t+4ln(t+1)1313=13(233)3(23)+4ln(13+113+1)=29363+4ln(3+131)0

Leave a Reply

Your email address will not be published. Required fields are marked *