Menu Close

calculate-S-1-1-2-1-3-4-1-5-6-




Question Number 63101 by mathmax by abdo last updated on 29/Jun/19
calculate  S =(1/(1×2)) +(1/(3×4)) +(1/(5×6)) +.....
calculateS=11×2+13×4+15×6+..
Commented by mathmax by abdo last updated on 29/Jun/19
let try another way we have (d/dx)ln(1+x) =(1/(1+x)) =Σ_(n=0) ^∞  (−1)^n  x^n  with ∣x∣<1 ⇒  ln(1+x) =Σ_(n=0) ^∞  (((−1)^n x^(n+1) )/(n+1)) =Σ_(n=1) ^∞  (((−1)^(n−1) x^n )/n) ⇒  lim_(x→1) ln(1+x)=ln(2) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) =1−(1/2) +(1/3) −(1/4) +(1/5) −(1/6) +...=  =(1−(1/2))+((1/3)−(1/4))+((1/5) −(1/6))+...=(1/(1×2)) +(1/(3×4)) +(1/(5×6)) +....=S ⇒  S =ln(2).
lettryanotherwaywehaveddxln(1+x)=11+x=n=0(1)nxnwithx∣<1ln(1+x)=n=0(1)nxn+1n+1=n=1(1)n1xnnlimx1ln(1+x)=ln(2)=n=1(1)n1n=112+1314+1516+==(112)+(1314)+(1516)+=11×2+13×4+15×6+.=SS=ln(2).
Answered by mr W last updated on 29/Jun/19
S =(1/(1×2)) +(1/(3×4)) +(1/(5×6)) +..... >0  S=((1/1)−(1/2))+((1/3)−(1/4))+((1/5)−(1/6))+  S=((1/1)+(1/3)+(1/5)+...)−((1/2)+(1/4)+(1/6)+...)  S=((1/1)+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+...)−2((1/2)+(1/4)+(1/6)+...)  S=((1/1)+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+...)−((1/1)+(1/2)+(1/3)+...)  S=0 ?
S=11×2+13×4+15×6+..>0S=(1112)+(1314)+(1516)+S=(11+13+15+)(12+14+16+)S=(11+12+13+14+15+16+)2(12+14+16+)S=(11+12+13+14+15+16+)(11+12+13+)S=0?
Commented by MJS last updated on 29/Jun/19
I seem to remember that it′s not allowed  to rearrange in this way  S=(1/2)+s ⇒ S>(1/2)  S=(7/(12))+s ⇒ S>(7/(12))  ...
IseemtorememberthatitsnotallowedtorearrangeinthiswayS=12+sS>12S=712+sS>712
Commented by turbo msup by abdo last updated on 29/Jun/19
we hsve S=Σa_i    and a_i  >0 how  can S be0....
wehsveS=Σaiandai>0howcanSbe0.
Commented by turbo msup by abdo last updated on 29/Jun/19
we hsve S=Σa_i    and a_i  >0 how  can S be0....
wehsveS=Σaiandai>0howcanSbe0.
Commented by mathmax by abdo last updated on 29/Jun/19
sir mrw your begining is correct  but the answer is not 0 let complete the  work we have S =lim_(n→+∞) ( Σ_(k=0) ^n  (1/(2k+1)) −(1/2)Σ_(k=1) ^n  (1/k))  we have Σ_(k=1) ^n  (1/k) =H_n   Σ_(k=0) ^n  (1/(2k+1)) =1+(1/3) +(1/5) +....+(1/(2n+1)) =1+(1/2) +(1/3) +(1/4) +(1/5) +....+(1/(2n)) +(1/(2n+1))  −(1/2) −(1/4) −....−(1/(2n)) =H_(2n+1) −(1/2) H_n  ⇒  Σ_(k=0) ^n  (1/(2k+1)) −(1/2)Σ_(k=1) ^n  (1/k) =H_(2n+1) −H_n =ln(2n+1)+γ +o((1/n))−ln(n)−γ +o((1/n))  =ln(((2n+1)/n))+o((1/n))→ln(2) (n→+∞) so  (1/(1×2)) +(1/(3×4)) +(1/(5×6)) +.....=ln(2).(γ is the constant of euler)
sirmrwyourbeginingiscorrectbuttheanswerisnot0letcompletetheworkwehaveS=limn+(k=0n12k+112k=1n1k)wehavek=1n1k=Hnk=0n12k+1=1+13+15+.+12n+1=1+12+13+14+15+.+12n+12n+11214.12n=H2n+112Hnk=0n12k+112k=1n1k=H2n+1Hn=ln(2n+1)+γ+o(1n)ln(n)γ+o(1n)=ln(2n+1n)+o(1n)ln(2)(n+)so11×2+13×4+15×6+..=ln(2).(γistheconstantofeuler)
Commented by mr W last updated on 29/Jun/19
thanks sir! i learnt something new.
thankssir!ilearntsomethingnew.
Commented by mathmax by abdo last updated on 29/Jun/19
you are always welcome.
youarealwayswelcome.
Answered by MJS last updated on 29/Jun/19
it seems to be  S=ln 2  but I cannot properly show it
itseemstobeS=ln2butIcannotproperlyshowit
Answered by naka3546 last updated on 29/Jun/19

Leave a Reply

Your email address will not be published. Required fields are marked *