Menu Close

calculate-S-n-0-i-j-n-i-j-2-i-j-




Question Number 46744 by math khazana by abdo last updated on 31/Oct/18
calculate S_n =Σ_(0≤i,j≤n)  ((i+j)/2^(i+j) )
calculateSn=0i,jni+j2i+j
Commented by MJS last updated on 31/Oct/18
I think S_∞ =8 but I cannot prove it
IthinkS=8butIcannotproveit
Commented by maxmathsup by imad last updated on 31/Oct/18
we have S_n =Σ_(i=0) ^n  Σ_(j=0) ^n  ((i/(2^i  2^j )) +(j/(2^i 2^j )))  =Σ_(i=0) ^n  (i/2^i )Σ_(j=0) ^n  (1/2^j ) +Σ_(i=0) ^n  (1/2^i )Σ_(j=0) ^n  (j/2^j )  = 2 Σ_(i=0) ^n  (i/2^i )Σ_(j=0) ^n  (1/2^j )( the function  (i,j)→((i+j)/2^(i+j) ) is symetric)  we have Σ_(j=0) ^n  (1/2^j )  =((1−((1/2))^(n+1) )/(1−(1/2))) =2(1−(1/2^(n+1) ))  =2 −(1/2^n ) also  Σ_(i=0) ^n  (i/2^i ) = w((1/2)) with w(x)=Σ_(i=0) ^n ix^i    (x≠1)  we have Σ_(i=0) ^n  x^i  =((x^(n+1) −1)/(x−1)) ⇒Σ_(i=1) ^n  i x^(i−1)  =((nx^(n+1) −(n+1)x^n +1)/((1−x)^2 )) ⇒  Σ_(i=1) ^n  i x^i  = (x/((1−x)^2 )){nx^(n+1) −(n+1x^n  +1}=w(x) ⇒  w((1/2)) =(1/(2((1/4)))){(n/2^(n+1) ) −((n+1)/2^n ) +1} =(n/2^n ) −((n+1)/2^(n−1) ) +2 ⇒  S_n =2 ( (n/2^n ) −((n+1)/2^(n−1) ) +2)(2−(1/2^n ))  and we see that lim_(n→+∞)  S_(n ) =8 .
wehaveSn=i=0nj=0n(i2i2j+j2i2j)=i=0ni2ij=0n12j+i=0n12ij=0nj2j=2i=0ni2ij=0n12j(thefunction(i,j)i+j2i+jissymetric)wehavej=0n12j=1(12)n+1112=2(112n+1)=212nalsoi=0ni2i=w(12)withw(x)=i=0nixi(x1)wehavei=0nxi=xn+11x1i=1nixi1=nxn+1(n+1)xn+1(1x)2i=1nixi=x(1x)2{nxn+1(n+1xn+1}=w(x)w(12)=12(14){n2n+1n+12n+1}=n2nn+12n1+2Sn=2(n2nn+12n1+2)(212n)andweseethatlimn+Sn=8.
Answered by MrW3 last updated on 31/Oct/18
((i+j)/2^(i+j) )=((i+j)/(2^i 2^j ))=(i/2^i )×(1/2^j )+(1/2^i )×(j/2^j )  S_n =Σ_(i=0) ^n Σ_(j=0) ^n ((i+j)/2^(i+j) )=Σ_(i=0) ^n (i/2^i )Σ_(j=0) ^n (1/2^j )+Σ_(i=0) ^n (1/2^i )Σ_(j=0) ^n (j/2^j )  Σ_(i=0) ^n (1/2^i )=((1−(1/2^(n+1) ))/(1−(1/2)))=2(1−(1/2^(n+1) ))  let T=Σ_(i=0) ^n (i/2^i )  T=(1/2)+(2/2^2 )+(3/2^3 )+...+(n/2^n )  2T=1+((1+1)/2)+((1+2)/2^2 )+((1+3)/2^3 )...+((1+n−1)/2^(n−1) )  2T=1+((1/2)+(1/2))+((1/2^2 )+(2/2^2 ))+((1/2^3 )+(3/2^3 ))...+((1/2^(n−1) )+((n−1)/2^(n−1) ))  2T=(1+(1/2)+(1/2^2 )+(1/2^3 )+...+(1/2^(n−1) ))+((1/2)+(2/2^2 )+(3/2^3 )...+((n−1)/2^(n−1) ))  2T=(1+(1/2)+(1/2^2 )+(1/2^3 )+...+(1/2^(n−1) ))+((1/2)+(2/2^2 )+(3/2^3 )...+((n−1)/2^(n−1) )+(n/2^n ))−(n/2^n )  2T=(1+(1/2)+(1/2^2 )+(1/2^3 )+...+(1/2^(n−1) ))+T−(n/2^n )  T=(1+(1/2)+(1/2^2 )+(1/2^3 )+...+(1/2^(n−1) ))−(n/2^n )  T=2(1−(1/2^n ))−(n/2^n )=2−((n+2)/2^n )=2(1−((n+2)/2^(n+1) ))  S_n =Σ_(i=0) ^n Σ_(j=0) ^n ((i+j)/2^(i+j) )=Σ_(i=0) ^n (i/2^i )Σ_(j=0) ^n (1/2^j )+Σ_(i=0) ^n (1/2^i )Σ_(j=0) ^n (j/2^j )  =2Σ_(i=0) ^n (i/2^i )Σ_(i=0) ^n (1/2^i )=2×2(1−((n+2)/2^(n+1) ))×2(1−(1/2^(n+1) ))  ⇒S_n =8(1−((n+2)/2^(n+1) ))(1−(1/2^(n+1) ))  lim_(n→∞) S_n =8
i+j2i+j=i+j2i2j=i2i×12j+12i×j2jSn=ni=0nj=0i+j2i+j=ni=0i2inj=012j+ni=012inj=0j2jni=012i=112n+1112=2(112n+1)letT=ni=0i2iT=12+222+323++n2n2T=1+1+12+1+222+1+323+1+n12n12T=1+(12+12)+(122+222)+(123+323)+(12n1+n12n1)2T=(1+12+122+123++12n1)+(12+222+323+n12n1)2T=(1+12+122+123++12n1)+(12+222+323+n12n1+n2n)n2n2T=(1+12+122+123++12n1)+Tn2nT=(1+12+122+123++12n1)n2nT=2(112n)n2n=2n+22n=2(1n+22n+1)Sn=ni=0nj=0i+j2i+j=ni=0i2inj=012j+ni=012inj=0j2j=2ni=0i2ini=012i=2×2(1n+22n+1)×2(112n+1)Sn=8(1n+22n+1)(112n+1)limnSn=8
Commented by behi83417@gmail.com last updated on 31/Oct/18
eX⊆elle^(Nt) !
eXelleNt!
Commented by maxmathsup by imad last updated on 31/Oct/18
thank you sir.
thankyousir.
Commented by MJS last updated on 31/Oct/18
great
great
Commented by MrW3 last updated on 31/Oct/18
thanks to all!  please also check answer to Q46731.
thankstoall!pleasealsocheckanswertoQ46731.

Leave a Reply

Your email address will not be published. Required fields are marked *