Question Number 51996 by maxmathsup by imad last updated on 01/Jan/19
$${calculate}\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{sin}\left(\frac{\pi}{\mathrm{4}{n}}\:+\frac{{k}\pi}{\mathrm{2}{n}}\right)\: \\ $$$$ \\ $$
Commented by Abdo msup. last updated on 19/Jan/19
$${we}\:{have}\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {sin}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{4}{n}}\right) \\ $$$$={Im}\left(\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{e}^{{i}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{4}{n}}\right)} \right)\:{but}\: \\ $$$${A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{e}^{{i}\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{4}{n}}} ={e}^{{i}\frac{\pi}{\mathrm{4}{n}}} \:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\left({e}^{\frac{{i}\pi}{\mathrm{2}{n}}} \right)^{{k}} \\ $$$$={e}^{\frac{{i}\pi}{\mathrm{4}{n}}} \:\frac{\mathrm{1}−\left({e}^{\frac{{i}\pi}{\mathrm{2}{n}}} \right)^{{n}} }{\mathrm{1}−{e}^{\frac{{i}\pi}{\mathrm{2}{n}}} }\:={e}^{\frac{{i}\pi}{\mathrm{4}{n}}} \:\frac{\mathrm{1}−{i}}{\mathrm{1}−{cos}\left(\frac{\pi}{\mathrm{2}{n}}\right)−{isin}\left(\frac{\pi}{\mathrm{2}{n}}\right)} \\ $$$$={e}^{\frac{{i}\pi}{\mathrm{4}{n}}} \:\:\:\frac{\sqrt{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}{n}}\right)−\mathrm{2}{isin}\left(\frac{\pi}{\mathrm{4}{n}}\right){cos}\left(\frac{\pi}{\mathrm{4}{n}}\right)} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:{e}^{\frac{{i}\pi}{\mathrm{4}{n}}} \:\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} }{−{isin}\left(\frac{\pi}{\mathrm{4}{n}}\right)\left({e}^{\frac{{i}\pi}{\mathrm{4}{n}}} \right)}\: \\ $$$$={i}\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:{e}^{\frac{{i}\pi}{\mathrm{4}{n}}} \:\:\:\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:{e}^{−\frac{{i}\pi}{\mathrm{4}{n}}} }{{sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)}\:={i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\:\frac{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{{i}}{\:\sqrt{\mathrm{2}}}}{{sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)} \\ $$$$=\frac{{i}}{\mathrm{2}}\:\frac{\mathrm{1}−{i}}{{sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{{i}+\mathrm{1}}{{sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)}\:\Rightarrow\bigstar\:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}{sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)}\:\bigstar \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jan/19
$${T}_{\mathrm{1}} ={sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)={sin}\left(\frac{\pi}{\mathrm{4}{n}}\right) \\ $$$${T}_{\mathrm{2}} ={sin}\left(\frac{\pi}{\mathrm{4}{n}}+\frac{\pi}{\mathrm{2}{n}}\right)={sin}\left(\frac{\mathrm{3}\pi}{\mathrm{4}{n}}\right) \\ $$$${T}_{\mathrm{3}} ={sin}\left(\frac{\pi}{\mathrm{4}{n}}+\frac{\mathrm{2}\pi}{\mathrm{2}{n}}\right)={sin}\left(\frac{\mathrm{5}\pi}{\mathrm{4}{n}}\right) \\ $$$${T}_{\mathrm{4}} ={sin}\left(\frac{\pi}{\mathrm{4}{n}}+\frac{\mathrm{3}\pi}{\mathrm{2}{n}}\right)={sin}\left(\frac{\mathrm{7}\pi}{\mathrm{4}{n}}\right) \\ $$$$… \\ $$$$…. \\ $$$${T}_{{n}} ={sin}\left(\frac{\pi}{\mathrm{4}{n}}+\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{2}{n}}\right)={sin}\left(\frac{\pi+\mathrm{2}\left({n}−\mathrm{1}\right)\pi}{\mathrm{4}{n}}\right) \\ $$$${now} \\ $$$$\mathrm{2}{sin}\left(\frac{\pi}{\mathrm{4}{n}}\right){sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)={cos}\mathrm{0}−{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{4}{n}}\right) \\ $$$$\mathrm{2}{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{4}{n}}\right){sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)={cos}\left(\frac{\mathrm{2}\pi}{\mathrm{4}{n}}\right)−{cos}\left(\frac{\mathrm{4}\pi}{\mathrm{4}{n}}\right) \\ $$$$\mathrm{2}{sin}\left(\frac{\mathrm{5}\pi}{\mathrm{4}{n}}\right){sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)={cos}\left(\frac{\mathrm{4}\pi}{\mathrm{4}{n}}\right)−{cos}\left(\frac{\mathrm{6}\pi}{\mathrm{4}{n}}\right) \\ $$$$…. \\ $$$$…. \\ $$$$\mathrm{2}{sin}\left(\frac{\pi+\mathrm{2}\left({n}−\mathrm{1}\right)\pi}{\mathrm{4}{n}}\right){sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)={cos}\left(\frac{\mathrm{2}\left({n}−\mathrm{1}\right)\pi}{\mathrm{4}{n}}\right)−{cos}\left(\frac{\mathrm{2}{n}\pi}{\mathrm{4}{n}}\right) \\ $$$${add}\:{them} \\ $$$$\mathrm{2}{sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)×{S}_{{n}} ={cos}\mathrm{0}−{cos}\left(\frac{\mathrm{2}{n}\pi}{\mathrm{4}{n}}\right) \\ $$$$\mathrm{2}{sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)×{S}_{{n}} =\mathrm{1}−{cos}\left(\frac{\pi}{\mathrm{2}}\right) \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}{sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)} \\ $$$$ \\ $$
Commented by Abdo msup. last updated on 19/Jan/19
$${thanks}\:{sir}\:{Tanmay}. \\ $$