calculate-S-n-k-0-n-1-sin-pi-4n-kpi-2n- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 51996 by maxmathsup by imad last updated on 01/Jan/19 calculateSn=∑k=0n−1sin(π4n+kπ2n) Commented by Abdo msup. last updated on 19/Jan/19 wehaveSn=∑k=0n−1sin((2k+1)π4n)=Im(∑k=0n−1ei((2k+1)π4n))butAn=∑k=0n−1ei(2k+1)π4n=eiπ4n∑k=0n−1(eiπ2n)k=eiπ4n1−(eiπ2n)n1−eiπ2n=eiπ4n1−i1−cos(π2n)−isin(π2n)=eiπ4n2e−iπ42sin2(π4n)−2isin(π4n)cos(π4n)=22eiπ4ne−iπ4−isin(π4n)(eiπ4n)=i22eiπ4ne−iπ4e−iπ4nsin(π4n)=i2212−i2sin(π4n)=i21−isin(π4n)=12i+1sin(π4n)⇒★Sn=12sin(π4n)★ Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jan/19 T1=sin(π4n)=sin(π4n)T2=sin(π4n+π2n)=sin(3π4n)T3=sin(π4n+2π2n)=sin(5π4n)T4=sin(π4n+3π2n)=sin(7π4n)…….Tn=sin(π4n+(n−1)π2n)=sin(π+2(n−1)π4n)now2sin(π4n)sin(π4n)=cos0−cos(2π4n)2sin(3π4n)sin(π4n)=cos(2π4n)−cos(4π4n)2sin(5π4n)sin(π4n)=cos(4π4n)−cos(6π4n)….….2sin(π+2(n−1)π4n)sin(π4n)=cos(2(n−1)π4n)−cos(2nπ4n)addthem2sin(π4n)×Sn=cos0−cos(2nπ4n)2sin(π4n)×Sn=1−cos(π2)Sn=12sin(π4n) Commented by Abdo msup. last updated on 19/Jan/19 thankssirTanmay. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-defined-on-0-1-by-f-0-0-and-f-x-1-2-1-2x-1-calculate-0-1-f-x-dx-Next Next post: Question-183071 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.