Menu Close

calculate-S-n-k-0-n-1-sin-pi-4n-kpi-2n-




Question Number 51996 by maxmathsup by imad last updated on 01/Jan/19
calculate S_n =Σ_(k=0) ^(n−1)  sin((π/(4n)) +((kπ)/(2n)))
calculateSn=k=0n1sin(π4n+kπ2n)
Commented by Abdo msup. last updated on 19/Jan/19
we have S_n =Σ_(k=0) ^(n−1) sin((((2k+1)π)/(4n)))  =Im(Σ_(k=0) ^(n−1)  e^(i((((2k+1)π)/(4n)))) ) but   A_n =Σ_(k=0) ^(n−1)  e^(i(((2k+1)π)/(4n))) =e^(i(π/(4n)))  Σ_(k=0) ^(n−1)   (e^((iπ)/(2n)) )^k   =e^((iπ)/(4n))  ((1−(e^((iπ)/(2n)) )^n )/(1−e^((iπ)/(2n)) )) =e^((iπ)/(4n))  ((1−i)/(1−cos((π/(2n)))−isin((π/(2n)))))  =e^((iπ)/(4n))    (((√2)e^(−((iπ)/4)) )/(2sin^2 ((π/(4n)))−2isin((π/(4n)))cos((π/(4n)))))  =((√2)/2) e^((iπ)/(4n))  (e^(−((iπ)/4)) /(−isin((π/(4n)))(e^((iπ)/(4n)) )))   =i ((√2)/2) e^((iπ)/(4n))    ((e^(−((iπ)/4))  e^(−((iπ)/(4n))) )/(sin((π/(4n))))) =i((√2)/2)  (((1/( (√2)))−(i/( (√2))))/(sin((π/(4n)))))  =(i/2) ((1−i)/(sin((π/(4n))))) =(1/2) ((i+1)/(sin((π/(4n))))) ⇒★ S_n =(1/(2sin((π/(4n))))) ★
wehaveSn=k=0n1sin((2k+1)π4n)=Im(k=0n1ei((2k+1)π4n))butAn=k=0n1ei(2k+1)π4n=eiπ4nk=0n1(eiπ2n)k=eiπ4n1(eiπ2n)n1eiπ2n=eiπ4n1i1cos(π2n)isin(π2n)=eiπ4n2eiπ42sin2(π4n)2isin(π4n)cos(π4n)=22eiπ4neiπ4isin(π4n)(eiπ4n)=i22eiπ4neiπ4eiπ4nsin(π4n)=i2212i2sin(π4n)=i21isin(π4n)=12i+1sin(π4n)Sn=12sin(π4n)
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jan/19
T_1 =sin((π/(4n)))=sin((π/(4n)))  T_2 =sin((π/(4n))+(π/(2n)))=sin(((3π)/(4n)))  T_3 =sin((π/(4n))+((2π)/(2n)))=sin(((5π)/(4n)))  T_4 =sin((π/(4n))+((3π)/(2n)))=sin(((7π)/(4n)))  ...  ....  T_n =sin((π/(4n))+(((n−1)π)/(2n)))=sin(((π+2(n−1)π)/(4n)))  now  2sin((π/(4n)))sin((π/(4n)))=cos0−cos(((2π)/(4n)))  2sin(((3π)/(4n)))sin((π/(4n)))=cos(((2π)/(4n)))−cos(((4π)/(4n)))  2sin(((5π)/(4n)))sin((π/(4n)))=cos(((4π)/(4n)))−cos(((6π)/(4n)))  ....  ....  2sin(((π+2(n−1)π)/(4n)))sin((π/(4n)))=cos(((2(n−1)π)/(4n)))−cos(((2nπ)/(4n)))  add them  2sin((π/(4n)))×S_n =cos0−cos(((2nπ)/(4n)))  2sin((π/(4n)))×S_n =1−cos((π/2))  S_n =(1/(2sin((π/(4n)))))
T1=sin(π4n)=sin(π4n)T2=sin(π4n+π2n)=sin(3π4n)T3=sin(π4n+2π2n)=sin(5π4n)T4=sin(π4n+3π2n)=sin(7π4n).Tn=sin(π4n+(n1)π2n)=sin(π+2(n1)π4n)now2sin(π4n)sin(π4n)=cos0cos(2π4n)2sin(3π4n)sin(π4n)=cos(2π4n)cos(4π4n)2sin(5π4n)sin(π4n)=cos(4π4n)cos(6π4n)..2sin(π+2(n1)π4n)sin(π4n)=cos(2(n1)π4n)cos(2nπ4n)addthem2sin(π4n)×Sn=cos0cos(2nπ4n)2sin(π4n)×Sn=1cos(π2)Sn=12sin(π4n)
Commented by Abdo msup. last updated on 19/Jan/19
thanks sir Tanmay.
thankssirTanmay.

Leave a Reply

Your email address will not be published. Required fields are marked *