Menu Close

calculate-S-n-x-x-1-2-x-2-4-x-4-8-x-2-n-2-n-1-




Question Number 49810 by Abdo msup. last updated on 10/Dec/18
calculate   S_n (x)=[((x+1)/2)] + [((x+2)/4)] +[((x+4)/8)]+...[((x+2^n )/2^(n+1) )]
calculateSn(x)=[x+12]+[x+24]+[x+48]+[x+2n2n+1]
Commented by maxmathsup by imad last updated on 13/Jan/19
S_n (x) =Σ_(k=1) ^n [(x/2^k ) +(1/2)]  now let prove that [t+(1/2)]=[2t]−[t]  let [t]=p  with p from Z ⇒ p≤t<p+1 ⇒2p≤2t<2p+2  p+(1/2)≤t+(1/2)<p+(3/2)   if p+(1/2)≤t+(1/2)<p+1 ⇒[t+(1/2)]=p and we have  2p+1≤2t+1<2p+2 ⇒2p≤2t<2p+1 ⇒[2t]=2p ⇒[2t]−[t]=p=[t+(1/2)]  if  p+1≤t+(1/2)<p+(3/2) we prve also that [2t]−[t]=[t+(1/2)] ⇒  S_n (x)=Σ_(k=1) ^n [((2x)/2^k )]−[(x/2^k )]=Σ_(k=1) ^n  [(x/2^(k−1) )]−[(x/2^k )]  =[x]−[(x/2)]+[(x/2)]−[(x/2^2 )] +....[(x/2^(n−2) )]−[(x/2^(n−1) )] +[(x/2^(n−1) )]−[(x/2^n )]  =[x]−[(x/2^n )] ⇒lim_(n→+∞)    S_n =[x] .
Sn(x)=k=1n[x2k+12]nowletprovethat[t+12]=[2t][t]let[t]=pwithpfromZpt<p+12p2t<2p+2p+12t+12<p+32ifp+12t+12<p+1[t+12]=pandwehave2p+12t+1<2p+22p2t<2p+1[2t]=2p[2t][t]=p=[t+12]ifp+1t+12<p+32weprvealsothat[2t][t]=[t+12]Sn(x)=k=1n[2x2k][x2k]=k=1n[x2k1][x2k]=[x][x2]+[x2][x22]+.[x2n2][x2n1]+[x2n1][x2n]=[x][x2n]limn+Sn=[x].
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18
T_r =[((x+2^(r−1) )/2^r )]=[(x/2^r )+(1/2)]>[(x/2^r )]+[(1/2)]  [(x/2^r )+(1/2)]>[(x/2^r )]+0  S_n (x)=Σ_(r=1) ^n [(x/2^r )]  value of S_n (x) can be determined when we know  how x related to 2  x=f(2)
Tr=[x+2r12r]=[x2r+12]>[x2r]+[12][x2r+12]>[x2r]+0Sn(x)=nr=1[x2r]valueofSn(x)canbedeterminedwhenweknowhowxrelatedto2x=f(2)

Leave a Reply

Your email address will not be published. Required fields are marked *