Menu Close

calculate-S-p-n-1-1-n-n-n-1-n-2-n-p-with-p-fromN-




Question Number 41409 by maxmathsup by imad last updated on 06/Aug/18
calculate S_p =Σ_(n=1) ^∞     (((−1)^n )/(n(n+1)(n+2)...(n+p)))  with p fromN
calculateSp=n=1(1)nn(n+1)(n+2)(n+p)withpfromN
Answered by sma3l2996 last updated on 07/Aug/18
(1/(n(n+1)(n+2)...(n+p)))=(a_0 /n)+(a_1 /(n+1))+...+(a_p /(n+p))  with  a_i =lim_(n→−i) ((n+i)/(n(n+1)...(n+p)))  (1/(n(n+1)(n+2)...(n+p)))=Σ_(i=0) ^p (a_i /(n+i))  so   S_p =Σ_(n=1) ^∞ (((−1)^n )/(n(n+1)(n+2)...(n+p)))=Σ_(n=1) ^∞ Σ_(i=0) ^p (((−1)^n a_i )/(n+i))  =Σ_(i=0) ^p a_i Σ_(n=1) ^∞ (((−1)^n )/(n+i))  let   m=n+i  S_n =Σ_(i=0) ^p a_i Σ_(m=i+1) ^∞ (((−1)^(m−i) )/m)  =Σ_(i=0) ^∞ a_i (−1)^(−i) (Σ_(m=i+1) ^∞ (((−1)^m )/m)+Σ_(m=1) ^i (((−1)^m )/m)−Σ_(m=1) ^i (((−1)^m )/m))  =Σ_(i=0) ^p (−1)^i a_i (Σ_(m=1) ^∞ (((−1)^m )/m)−Σ_(m=1) ^i (((−1)^m )/m))  note:  Σ_(n=1) ^∞ (((−1)^n )/n)=−ln(2)  Therefore:    S_p =Σ_(i=0) ^p (−1)^i a_i (−ln(2)−Σ_(m=1) ^i (((−1)^m )/m))
1n(n+1)(n+2)(n+p)=a0n+a1n+1++apn+pwithai=limnin+in(n+1)(n+p)1n(n+1)(n+2)(n+p)=pi=0ain+isoSp=n=1(1)nn(n+1)(n+2)(n+p)=n=1pi=0(1)nain+i=pi=0ain=1(1)nn+iletm=n+iSn=pi=0aim=i+1(1)mim=i=0ai(1)i(m=i+1(1)mm+im=1(1)mmim=1(1)mm)=pi=0(1)iai(m=1(1)mmim=1(1)mm)note:n=1(1)nn=ln(2)Therefore:Sp=pi=0(1)iai(ln(2)im=1(1)mm)

Leave a Reply

Your email address will not be published. Required fields are marked *