Menu Close

calculate-S-x-n-0-sin-nx-n-




Question Number 36741 by prof Abdo imad last updated on 04/Jun/18
calculate S(x)=Σ_(n=0) ^∞   ((sin(nx))/(n!))
calculateS(x)=n=0sin(nx)n!
Commented by abdo.msup.com last updated on 05/Jun/18
S(x)=Im(Σ_(n=0) ^∞  (e^(inx) /(n!))) but  Σ_(n=0) ^∞   (e^(inx) /(n!)) =Σ_(n=0) ^∞   (((e^(ix) )^n )/(n!)) =e^e^(ix)    =e^(cosx +isinx) =e^(cosx) {cos(sinx)+isin(sinx)}  ⇒ S(x)= e^(cosx)  sin(sinx) .
S(x)=Im(n=0einxn!)butn=0einxn!=n=0(eix)nn!=eeix=ecosx+isinx=ecosx{cos(sinx)+isin(sinx)}S(x)=ecosxsin(sinx).
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18
p=((cosnx)/(n!))  q=((sinnx)/(n!))  p+iq=(e^(inx) /(n!))=(((e^(ix) )^n )/(n!))  T_n =(((e^(ix) )^n )/(n!))=  T_1 =(((e^(ix) )^1 )/(1!))  T_2 =(((e^(ix) )^2 )/(2!))  T_3 =(((e^(ix) )^3 )/(3!))  ...  ...  T_n =(((e^(ix) )^n )/(n!))  ...  ...  T_1 +T_2 +...+T_n +...  we know that e^x =(x/(1!))+(x^2 /(2!))+....  soT_1 +T_2 +T_3 +...  (e^((e^(ix) )) /1)=e^(cosx+isinx) =e^(cosx) .e^(isinx)   =e^(cosx) {cos(sinx)+isin(sinx)}    e^(cosx) cos(sinx)+ie^(cosx) sin(sinx)  so required ans is   e^(cosx) sin(sinx)
p=cosnxn!q=sinnxn!p+iq=einxn!=(eix)nn!Tn=(eix)nn!=T1=(eix)11!T2=(eix)22!T3=(eix)33!Tn=(eix)nn!T1+T2++Tn+weknowthatex=x1!+x22!+.soT1+T2+T3+e(eix)1=ecosx+isinx=ecosx.eisinx=ecosx{cos(sinx)+isin(sinx)}ecosxcos(sinx)+iecosxsin(sinx)sorequiredansisecosxsin(sinx)

Leave a Reply

Your email address will not be published. Required fields are marked *