calculate-S-x-n-0-x-3n-3n-1-after-finding-the-radius-of-convergence-2-find-the-value-of-n-0-1-3n-1-8-n- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 35621 by abdo mathsup 649 cc last updated on 21/May/18 calculateS(x)=∑n=0∞x3n3n+1afterfindingtheradiusofconvergence.2)findthevalueof∑n=0∞1(3n+1)8n Commented by abdo.msup.com last updated on 25/May/18 1)letun(x)=x3n3n+1ifx≠0∣un+1(x)un(x)∣=∣x3n+33n+4x3n3n+1∣=3n+13n+4∣x∣3→∣x∣3soif∣x∣<1theserieconvergedsoR=1letfindS(x)wehavexS(x)=∑n=0∞x3n+13n+1=w(x)w′(x)=∑n=0∞x3n=11−x3⇒w(x)=∫0xdt1−t3+cbutc=w(0)=0F(t)=11−t3=1(1−t)(t2+t+1)=a1−t+bt+ct2+t+1a=limt→1(1−t)F(t)=13F(t)=13(1−t)+bt+ct2+t+1limt→+∞tF(t)=−13+b=0⇒b=13F(t)=13(1−t)+13t+ct2+t+1F(0)=13+c=1⇒c=1−13=23soF(t)=13(1−t)+13t+2t2+t+13w(x)=∫0xdt1−t+12∫0x2t+1+3t2+t+1dt=[−ln∣1−t∣]0x+12[ln(t2+t+1)]0x+32∫0xdtt2+t+1=−ln∣1−x∣+12ln(x2+x+1)+32II=∫0xdt(t+12)2+34=t+12=32u∫132x+13134(1+u2)32du=4332[arctan(u)]132x+13=23{arctan(2x+13)−arctan(13)}3w(x)=−ln∣1−x∣+12ln(x2+x+1)+3{arctan(2x+13)−π6}⇒w(x)=−13ln∣1−x∣+16ln(x2+x+1)+13{arctan(2x+13)−π6}andS(x)=w(x)x Commented by abdo.msup.com last updated on 25/May/18 2)∑n=0∞1(3n+1)8n=S(12)=2w(12)=2{−13ln(12)+16ln(74)+13{arctan(23)−π6}=23ln(2)+13ln(74)+23arctan(23)−π33. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-x-e-x-sinx-odd-2pi-periodic-developp-f-at-fourier-serie-Next Next post: Question-166695 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.