Menu Close

calculate-S-x-n-0-x-3n-3n-1-after-finding-the-radius-of-convergence-2-find-the-value-of-n-0-1-3n-1-8-n-




Question Number 35621 by abdo mathsup 649 cc last updated on 21/May/18
calculate   S(x) = Σ_(n=0) ^∞    (x^(3n) /(3n+1))  after finding  the radius of convergence .  2) find the value of     Σ_(n=0) ^∞    (1/((3n+1)8^n ))
calculateS(x)=n=0x3n3n+1afterfindingtheradiusofconvergence.2)findthevalueofn=01(3n+1)8n
Commented by abdo.msup.com last updated on 25/May/18
1) let u_n (x)= (x^(3n) /(3n+1))  if x≠0   ∣((u_(n+1) (x))/(u_n (x)))∣ = ∣ ((x^(3n+3) /(3n+4))/(x^(3n) /(3n+1)))∣ =((3n+1)/(3n+4)) ∣x∣^3   →∣x∣^3    so if ∣x∣<1  the serie converged  so R =1 let find S(x)  we have x S(x) = Σ_(n=0) ^∞  (x^(3n+1) /(3n+1)) =w(x)  w^′ (x)= Σ_(n=0) ^∞   x^(3n)   = (1/(1−x^3 )) ⇒  w(x) = ∫_0 ^x     (dt/(1−t^3 ))  +c   but c=w(0)=0  F(t) = (1/(1−t^3 )) = (1/((1−t)(t^2  +t +1)))  =(a/(1−t)) +((bt +c)/(t^2  +t +1))  a=lim_(t→1) (1−t)F(t) =(1/3)  F(t) = (1/(3(1−t))) +((bt +c)/(t^2  +t +1))  lim_(t→+∞) t F(t) = −(1/3) +b =0⇒b=(1/3)  F(t) = (1/(3(1−t))) +(((1/3)t +c)/(t^2  +t+1))  F(0) = (1/3) +c =1⇒c=1−(1/3) =(2/3)  so F(t)= (1/(3(1−t))) +(1/3) ((t+2)/(t^2  +t+1))  3w(x)=∫_0 ^x   (dt/(1−t)) + (1/2)∫_0 ^x  ((2t+1+3)/(t^2  +t+1))dt   =[−ln∣1−t∣]_0 ^x    +(1/2)[ln(t^2  +t+1)]_0 ^x   +(3/2) ∫_0 ^x    (dt/(t^2  +t+1))  =−ln∣1−x∣ +(1/2)ln(x^(2 )  +x+1)+(3/2) I  I = ∫_0 ^x     (dt/((t+(1/2))^2  +(3/4)))  =_(t +(1/2)=((√3)/2) u)    ∫_(1/( (√3))) ^((2x+1)/( (√3)))      (1/((3/4)( 1+u^2 )))((√3)/2)du  = (4/3) ((√3)/2) [arctan(u)]_(1/( (√3))) ^((2x+1)/( (√3)))   = (2/( (√3))) { arctan(((2x+1)/( (√3)))) −arctan((1/( (√3))))}  3w(x)=−ln∣1−x∣ +(1/2)ln(x^2  +x+1)  +(√3){arctan(((2x+1)/( (√3)))) −(π/6)} ⇒  w(x) =−(1/3)ln∣1−x∣ +(1/6)ln(x^2  +x+1)  + (1/( (√3))){ arctan(((2x+1)/( (√3)))) −(π/6)}and  S(x)= ((w(x))/x)
1)letun(x)=x3n3n+1ifx0un+1(x)un(x)=x3n+33n+4x3n3n+1=3n+13n+4x3→∣x3soifx∣<1theserieconvergedsoR=1letfindS(x)wehavexS(x)=n=0x3n+13n+1=w(x)w(x)=n=0x3n=11x3w(x)=0xdt1t3+cbutc=w(0)=0F(t)=11t3=1(1t)(t2+t+1)=a1t+bt+ct2+t+1a=limt1(1t)F(t)=13F(t)=13(1t)+bt+ct2+t+1limt+tF(t)=13+b=0b=13F(t)=13(1t)+13t+ct2+t+1F(0)=13+c=1c=113=23soF(t)=13(1t)+13t+2t2+t+13w(x)=0xdt1t+120x2t+1+3t2+t+1dt=[ln1t]0x+12[ln(t2+t+1)]0x+320xdtt2+t+1=ln1x+12ln(x2+x+1)+32II=0xdt(t+12)2+34=t+12=32u132x+13134(1+u2)32du=4332[arctan(u)]132x+13=23{arctan(2x+13)arctan(13)}3w(x)=ln1x+12ln(x2+x+1)+3{arctan(2x+13)π6}w(x)=13ln1x+16ln(x2+x+1)+13{arctan(2x+13)π6}andS(x)=w(x)x
Commented by abdo.msup.com last updated on 25/May/18
2) Σ_(n=0) ^∞     (1/((3n+1)8^n )) =S((1/2))  =2w((1/2))=2{ −(1/3)ln((1/2))+(1/6)ln((7/4))  +(1/( (√3))){ arctan((2/( (√3)))) −(π/6)}  =(2/3)ln(2)  + (1/3)ln((7/4)) +(2/( (√3)))arctan((2/( (√3))))  −(π/(3(√3))) .
2)n=01(3n+1)8n=S(12)=2w(12)=2{13ln(12)+16ln(74)+13{arctan(23)π6}=23ln(2)+13ln(74)+23arctan(23)π33.

Leave a Reply

Your email address will not be published. Required fields are marked *