Question Number 130066 by Don08q last updated on 22/Jan/21
$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{energy}\:\mathrm{loss}\:\mathrm{when}\:\mathrm{a}\:\mathrm{5}\:{kg} \\ $$$$\mathrm{object}\:\mathrm{moving}\:\mathrm{at}\:\mathrm{5}\:{ms}^{−\mathrm{1}} \:\mathrm{collides}\:\mathrm{head} \\ $$$$−\mathrm{on}\:\mathrm{with}\:\mathrm{and}\:\mathrm{sticks}\:\mathrm{to}\:\mathrm{a}\:\mathrm{stationary} \\ $$$$\mathrm{3}\:{kg}\:\mathrm{object}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\boldsymbol{{Answer}}:\:\:\mathrm{3}.\mathrm{75}\:\mathrm{J}\right] \\ $$$$\:{I}\:{need}\:{help}.\:\mathrm{How}\:\mathrm{do}\:\mathrm{I}\:\mathrm{arrive}\:\mathrm{at}\:\mathrm{this} \\ $$$$\:\mathrm{answer}? \\ $$
Commented by mr W last updated on 22/Jan/21
$${answer}\:{is}\:{wrong}! \\ $$
Answered by ajfour last updated on 22/Jan/21
$${Mu}=\left({M}+{m}\right){v} \\ $$$${energy}\:{loss}=\frac{\mathrm{1}}{\mathrm{2}}{Mu}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\left({M}+{m}\right)\left(\frac{{M}}{{M}+{m}}\right)^{\mathrm{2}} {u}^{\mathrm{2}} \\ $$$$=\frac{{Mu}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{1}−\frac{{M}}{{M}+{m}}\right) \\ $$$$=\frac{{mMu}^{\mathrm{2}} }{\mathrm{2}\left({M}+{m}\right)}\:=\frac{\left(\mathrm{3}{kg}\right)\left(\mathrm{5}{kg}\right)\left(\mathrm{5}{ms}^{−\mathrm{1}} \right)^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{5}{kg}+\mathrm{3}{kg}\right)} \\ $$$$=\frac{\mathrm{3}×\mathrm{125}}{\mathrm{16}}{J}\:=\frac{\mathrm{375}}{\mathrm{16}}{J} \\ $$$$=\mathrm{23}\bullet\mathrm{437}{J} \\ $$
Commented by Don08q last updated on 23/Jan/21
$${Thank}\:{you}\:{Sir} \\ $$
Answered by mr W last updated on 22/Jan/21
$${m}_{\mathrm{1}} =\mathrm{5}\:{kg} \\ $$$${m}_{\mathrm{2}} =\mathrm{3}\:{kg} \\ $$$${v}_{\mathrm{1}{i}} =\mathrm{5}\:{m}/{s} \\ $$$${v}_{\mathrm{2}{i}} =\mathrm{0}\:{m}/{s} \\ $$$${v}_{\mathrm{1}{f}} ={v}_{\mathrm{2}{f}} ={v}_{{f}} \\ $$$${m}_{\mathrm{1}} {v}_{\mathrm{1}{i}} +{m}_{\mathrm{2}} {v}_{\mathrm{2}{i}} ={m}_{\mathrm{1}} {v}_{\mathrm{1}{f}} +{m}_{\mathrm{2}} {v}_{\mathrm{2}{f}} \\ $$$$\Rightarrow{m}_{\mathrm{1}} {v}_{\mathrm{1}{i}} =\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right){v}_{{f}} \\ $$$$\Rightarrow{v}_{{f}} =\frac{{m}_{\mathrm{1}} }{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} }{v}_{\mathrm{1}{i}} =\frac{\mathrm{5}×\mathrm{5}}{\mathrm{5}+\mathrm{3}}=\frac{\mathrm{25}}{\mathrm{8}}\:{m}/{s} \\ $$$${loss}\:{of}\:{energy}: \\ $$$$\Delta{E}=\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{1}} {v}_{\mathrm{1}{i}} ^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right){v}_{{f}} ^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{5}×\mathrm{5}^{\mathrm{2}} }{\mathrm{2}}−\frac{\left(\mathrm{5}+\mathrm{3}\right)×\mathrm{25}^{\mathrm{2}} }{\mathrm{2}×\mathrm{8}^{\mathrm{2}} }=\mathrm{23}.\mathrm{4375}\:{J} \\ $$
Commented by Don08q last updated on 22/Jan/21
$${Thank}\:{you}\:{Sir} \\ $$
Answered by Don08q last updated on 22/Jan/21
$$\mathrm{someone}\:\mathrm{sent}\:\mathrm{me}\:\mathrm{this}\:\mathrm{solution} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{KE}\:\:=\:\:\frac{{p}^{\mathrm{2}} }{\mathrm{2}{m}} \\ $$$$\mathrm{since}\:\mathrm{momentum}\:\mathrm{is}\:\mathrm{conserved}, \\ $$$$\:{m}_{\mathrm{1}} {u}_{\mathrm{1}} \:=\:\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right){v}\:=\:{p} \\ $$$$\Rightarrow\:{p}\:=\:\mathrm{5}{kg}×\mathrm{5}{ms}^{−\mathrm{1}} \:=\:\mathrm{25}{kgms}^{−\mathrm{1}} \\ $$$${KE}_{{i}} \:=\:\frac{{p}^{\mathrm{2}} }{\mathrm{2}{m}_{\mathrm{1}} }\:\: \\ $$$${KE}_{{f}} \:=\:\frac{{p}^{\mathrm{2}} }{\mathrm{2}\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \underset{} {\right)}} \\ $$$$\mathrm{Energy}\:\mathrm{loss}\:=\:{KE}_{{i}} \:−\:{KE}_{{f}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:\frac{{p}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\mathrm{1}}{{m}_{\mathrm{1}} }\:−\:\frac{\mathrm{1}}{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} }\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:\frac{\left(\mathrm{25}\right)^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{5}}\:−\:\frac{\mathrm{1}}{\mathrm{5}+\mathrm{3}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:\mathrm{23}.\mathrm{4375}\:{J} \\ $$